*** INTRODUCTION**

- ✓ In particular statistics, we come across many situations where we often require to find a relationship between two or more variables. For example, weight and height of a person, demand and supply, expenditure depends on income, etc. These relation, in general, may be expresses by polynomial or they may have exponential or logarithmic relationship. In order to determine such relationship, first it is requiring to collect the data showing corresponding values of the variables under consideration.
- ✓ Suppose (x₁, y₁), (x₂, y₂),, (x_n, y_n) be the data showing corresponding values of the variables x and y under consideration. If we plot the above data points on a rectangular coordinate system, then the set of points so plotted form a scatter diagram.
- From this diagram, it is sometimes possible to visualize a smooth curve approximating the data. Such a curve is called an approximating curve.
- ✓ In particular, if the data approximate well to a straight line, we say that a linear relationship exists between the variables. It is quite possible that the relationship of the form y = f(x) between two variables x and y, giving the approximating curve and which fit the given data of x and y, is called curve fitting.

CURVE FITTING

✓ Curve fitting is the process of finding the 'best-fit' curve for a given set of data. It is the representation of the relationship between two variables by means of an algebraic equation.

***** THE METHOD OF LEAST SQUARE

- ✓ The method of least squares assumes that the best-fit curve of a given type is the curve that has the minimum sum of the square of the deviation (least square error) from a given set of data.
- ✓ Suppose that the data points are (x₁, y₁), (x₂, y₂), ..., (x_n, y_n), where x is independent and y is dependent variable. Let the fitting curve f(x) has the following deviations (or errors or residuals) from each data points

$$d_1 = y_1 - f(x_1), d_2 = y_2 - f(x_2), ..., d_n = y_n - f(x_n)$$

 Clearly, some of the deviations will be positive and others negative. Thus, to give equal weightage to each error, we square each of these and form their sum; that is,

$$D = d_1^2 + d_2^2 + \dots + d_n^2$$

✓ Now, according to the method of least squares, the best fitting curve has the property that

$$D = d_1^2 + d_2^2 + \dots + d_n^2 = \sum_{i=1}^n d_i^2 = \sum_{i=1}^n [y_i - f(x_i)]^2 = a \text{ minimum.}$$

- **\bullet** FITTING A STRAIGHT LINE y = a + bx (LINEAR APPROXIMATION)
 - ✓ Suppose the equation of a straight line of the form y = a + bx is to be fitted to the n-data points (x₁, y₁), (x₂, y₂), ..., (x_n, y_n), n ≥ 2, Where a is y-intercept and b is its slope.
 - ✓ For the general point (x_i, y_i), the vertical distance of this point from the line y = a + bx is the deviation d_i, then d_i = y_i − f(x_i) = y_i − a − bx_i.
 - ✓ Applying method of least squares, the values of a and b are so determined as to minimize

$$D = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

✓ This will be minimum,

$$\frac{\partial D}{\partial a} = 0 \Longrightarrow -2\sum_{i=1}^{n} (y_i - a - bx_i) = 0 \text{ and } \frac{\partial D}{\partial b} = 0 \Longrightarrow -2\sum_{i=1}^{n} x_i (y_i - a - bx_i) = 0$$

✓ Simplifying and expanding the above equations, we have

$$\sum_{i=1}^{n} y_i = a \sum_{i=1}^{n} 1 + b \sum_{i=1}^{n} x_i \text{ and } \sum_{i=1}^{n} x_i y_i = a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} x_i^2$$

✓ Which implies

$$\sum_{i=1}^{n} y_i = an + b \sum_{i=1}^{n} x_i \text{ and } \sum_{i=1}^{n} x_i y_i = a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} x_i^2$$

 \checkmark We obtain following normal equations for the best fitting straight line y = a + bx.

$$\sum y = an + b \sum x$$
$$\sum xy = a \sum x + b \sum x^{2}$$

✓ The normal equations for the best fitting straight line y = ax + b is

$$\sum y = bn + a \sum x$$
$$\sum xy = b \sum x + a \sum x^{2}$$

METHOD - 1: FITTING A STRAIGHT LINE

С	1	By the	metho	d of lea	ast squ	are, fin	d the s	straight	line tl	nat bes	t fits th	e			
		x	1	2	3	4	5								
		y	14	27	40	55	68								
		Answe	r: y =	13.6x											
С	2	Fit a str	Fit a straight line for following data. Also, find y when $x = 2.8$.												
		х	2	5	6	9	11								
		у	2	4	6	9	10								
		Answe	Answer: $y = -0.0244 + 0.9431x$. $y(2.8) = 2.6163$												
H	3	Fit a straight line $y = a + bx$ to the following data.													
		X	-2	-1	0	1	2								
		у	1	2	3	3	4								
		Answe	$\mathbf{r}: \mathbf{y} = \mathbf{z}$	2.7907	+ 0.47	767x									
С	4	Fit a str	aight li	ne y =	ax + b	for follo	wing d	ata.							
		х	6	7	7	8	8	8	9	9	10				
		у	5	5	4	5	4	3	4	3	3				
		Answer: $y = -0.5x + 8$													
Н	5	Fit a straight line to the following data.													
		X	x 71 68 73 69 67 65 66 67												
		У	69	72	70	70	68	67	68	68					
		Answe	$\mathbf{r}: \mathbf{y} = 4$	46.939	4 + 0.3	3232x									

II	6	Eitest	aight li	no to th	o follow	uina da	tanaa	andina		donor	dontry	ariabla		
п	0	FILASU	aight ii	ne to th	le lollov	ving da	ta reg	araing	x as a	deper	ident va	ariable.		
		x	2.4	3.1	3.5	4.2	5	6						
		у	1	2	3	4	6	8						
		Answe	r: y = -	-3.970	3 + 1.	9761x		_						
Н	7	The we	ight of a	a calf ta	ken at v	veekly	interv	als are	given	below	v. Fit a s	traight		
		line usi	ng metl	hod of l	east squ	uares.			_			_		
			<u> </u>				_	6	-	0	0	10		
		Age (x) _		3	4	5	6	/	8	9	10		
		Weight	(y) 52	2.5 58.7	7 65	70.2	75.4	81.1	87.2	95.5	102.5	108.4		
		Answe	$\mathbf{r}: \mathbf{y} = 4$	46.609	4 + 6 .1	1554x								
Η	8	If P is t	he pull	require	ed to lif	t a loa	d W b	y mea	ns of a	pulle	y block	, find a		
		linear a	near approximation of the form $P = mW + c$ connecting P and W, using											
		the foll	the following data.											
		D												
			13	75	102	110								
		VV	51	/5	102	119								
		Answe	$\mathbf{r}:\mathbf{P}=0$	0.2028	SW + 2.	6580								
Т	9	By met	hod of l	least sq	uares, f	fit a lin	ear re	lation	of the	form	P = a +	- bW to		
		the foll	owing c	lata, P i	s the pu	ıll requ	ired to	o lift a	weigh	t W. A	lso esti	mate P,		
		when V	V is 150).										
		Р	50	70	100	120	1							
			12	15	21	25								
		Answe	$\mathbf{r} \cdot \mathbf{P} = \mathbf{r}$	2 2759	+ 0.19	23 879W] P(15)	\mathbf{n}) – a	80 46	55				
T	10		Allswei: $r = 2.2737 \pm 0.1079W$. $r(130) = 30.4035$											
1	10	Fit a sti	raight li	ne for t	ine give	n pairs	01 (X,	y) wh	ich are	e (1, 5)), (Z, 7)	, (3, 9),		
		(4, 10),	(5, 11)).										
		Answe	$\mathbf{r}: \mathbf{y} = 3$	3.9+1	. 5x									

✤ FITTING A PARABOLA

✓ Consider a set of n pairs of the given values (x, y) for fitting the curve y = a + bx + cx². The residual R = y - (y = a + bx + cx²) is the difference between the observed and estimated values of y. We have to find a, b, c such that the sum of the squares of the residuals is minimum. Let

[4]

$$S = \sum_{1}^{n} [y - (a + bx + cx^{2})]^{2} \dots \dots (1)$$

✓ Differentiating S with respect to a, b, c and equating zero. We obtain following normal equations for the best fitting $y = a + bx + cx^2$ curve (parabola) of second degree.

$$\sum y = na + b \sum x + c \sum x^{2}$$
$$\sum x y = a \sum x + b \sum x^{2} + c \sum x^{3}$$
$$\sum x^{2} y = a \sum x^{2} + b \sum x^{3} + c \sum x^{4}$$

✓ The normal equation for $y = ax^2 + bx + c$ are

$$\sum y = n c + b \sum x + a \sum x^{2}$$
$$\sum x y = c \sum x + b \sum x^{2} + a \sum x^{3}$$
$$\sum x^{2} y = c \sum x^{2} + b \sum x^{3} + a \sum x^{4}$$

METHOD - 2: FITTING A PARABOLA

С	1	Fit a se	cond de	gree po	olynom	ial of y	on x to	the following data.						
		х	50	70	100	120								
		у	12	15	21	25								
		Answer: $y = 5.5259 + 0.1029x + 0.0005x^2$												
Н	2	Fit a po experin	lynomia nental o	al of de lata. Als	gree tw so, estir	o using nate y(least so 2.4).	quare method for the following						
		x 1 2 3 4 5												
		у	5	12	26	60	97]						
		Answe	$\mathbf{r}:\mathbf{y}=1$	LO.4 –	11.085	57x + 5	5.7143	x^2 . y(2.4) = 16.7086						

С	3	Fit a rel	ation o	f the f	orm	R =	a + 1	о V +	c V ²	to the	follo	wing	g data	, whe	re V	
		is the v	elocity	in km	/hr.	and	R is t	he re	esista	ince in	km/	/quin	tal. E	stima	te R	
		when V	= 90.													
		V	20	40		60	80	1	.00	120	1					
		R	5.5	9.1	1	4.9	22.8	8 3	3.3	46.0						
		Answe	$\mathbf{r}:\mathbf{R}=\mathbf{r}$	-4.35	5 + (0.00	24V	+ 0.0	0029	\mathbf{V}^2 . R ((90)	= 2'	7.818	33		
Η	4	Fit a see	cond de	gree p	bara	bola	y = a	$ax^2 +$	bx -	⊦ c to t	he fo	ollow	ing da	ata.		
		Х	-1	0		1	2		3							
		у	5	6		21	50		93							
		Answe	$\mathbf{r}:\mathbf{y}=7$	$7x^{2} +$	8x -	+ 6										
С	5	Fit a see	cond de	gree p	oara	bola	y = a	$ax^2 +$	bx -	⊦ c to t	he fo	ollow	ing da	ata.		
		Х	-3	-2	-	-1	0		1	2	3	3				
		у	12	4		1	2		7	15	3	0				
		Answe	nswer: $y = 0.5453x^2 + 3.6714x + 7.7954$													
Т	6	Fit a pa	Fit a parabola to the following observations.													
		х	1		2		3	4		5	6	5				
		у	3.13	3.	76	6.	94	12.6	2 2	20.86	31.	53				
		Answe	$\mathbf{r}:\mathbf{y}=4$	ł. 982	- 3	. 119	99x +	- 1.2	579x	x ²						
Η	7	Fit a see	cond de	gree p	bara	bola	y = a	a + b	x + c	x ² to t	he fo	ollow	ing da	ata.		
		Х	1.0	1.5	4	2.0	2.5	; ;	3.0	3.5	4.	0				
		у	1.1	1.3	-	1.6	2.0		2.7	3.4	4.	1				
		Answe	r : y = 1	L. 035	7 –	0.19	9 2 9x	+ 0 .	2429	$9 x^2$						
Т	8	For 10	random	ly sele	ecte	d obs	serva	tions	, the	follow	ving o	lata v	were	recor	ded.	
		Obser Num	vation ther	1	2	3	4	5	6	7	8	9	10			
		Over	time	1	1	2	2	3	3	4	5	6	7			
		Addit	s (x) ional	2			10		10	10	14	11	1.4			
		units	s (y)	Ζ	/	/	10	8	12	10	14	11	14			
		Determ	ine the	e coe	ttici	ent	of r	egres	sion	usin	g th	e no	n-lin	ear f	orm	
		y = a +	$b_1x +$	b ₂ x [∠] .	_	_			_	- 2						
		Answe	$\mathbf{r}: \mathbf{y} = 1$	L. 802	2 +	3.48	323x	- 0 .	2690	0x²						

Η	9	Tł	ne following are the	e data	on the	dryir	ng tim	e of a	certa	in va	rnish	and the	W
		an	nount of an additiv	e that	is inte	nded	to red	luce tl	ne dry	ving ti	me?		2019
			Amount of varnish additive(grams) "x"	0	1	2	3	4	5	6	7	8	(7)
		Drying time(hr.) "y" 12 10.5 10 8 7 8 7.5 8.5 9											
		I.	Fit a second degre	ee pol	ynomi	al by t	he m	ethod	of lea	ıst sqı	iare.		
		II. Use the result to predict the drying time of the varnish when 6.5 gms of										Ĩ	
		the additive is being used.											
		Aı	nswer: y = 12.184	18 – 2	1.8465	5x + C). 182	9x ² . y	v(6.5)) = 7.	9099)	

✤ FITTING THE GENERAL CURVES

 \checkmark **y** = **ae**^{bx} yields

- > Taking Logarithm on both sides $\log y = \log a + bx$.
- > Denoting logy = Y and loga = A, then above equation becomes Y = A + bx.
- Find A, b & consequently a=Antilog A can be calculated.

\checkmark **y** = **ax**^b yields

- > Taking Logarithm on both sides $\log y = \log a + \log x$.
- > Denoting $\log y = Y$, $\log a = A$ and $\log x = X$, we obtain Y = A + bX.
- Find A, b & consequently a=Antilog A can be calculated.

\checkmark **y** = **ab**^x yields

- > Taking Logarithm on both sides $\log y = \log a + x \log b$.
- > Denoting logy = Y, log a = A, log b = B, we obtain Y = A + Bx.
- ➢ Find A, B & consequently a = Antilog A and b = Antilog B can be calculated.

$$\checkmark$$
 y = a + bx²

> Take the auxiliary equations

$$\sum y = na + b \sum x^2$$

- $\sum x^2 y = a \sum x^2 + b \sum x^4$
- > Find the value of $\sum x^2$, $\sum x^2 y$, $\sum x^4$.
- ➢ Find a, b.

$$\checkmark y = ax^2 + \frac{b}{x}$$

✓ Take the auxiliary equations

$$\sum x^{2}y = a \sum x^{4} + b \sum x$$
$$\sum \frac{y}{x} = a \sum x + b \sum \frac{1}{x^{2}}$$

> Find the value of $\sum x$, $\sum x^2 y$, $\sum x^4$, $\sum \frac{y}{x}$, $\sum \frac{1}{x^2}$.

➢ Find a, b.

 $\checkmark \mathbf{p}\mathbf{v}^{\gamma} = \mathbf{C}$

- $\blacktriangleright \quad v = \left(\frac{C}{p} \right)^{\frac{1}{\gamma}} \Rightarrow v = C^{\frac{1}{\gamma}} p^{-\frac{1}{\gamma}}$
- > Take logarithm both the sides $\log v = \frac{1}{\gamma} \log C \frac{1}{\gamma} \log p$.
- > Denoting $\log v = Y$, $\frac{1}{\gamma} \log C = A$, $-\frac{1}{\gamma} = B$.
- > Find A, B & consequently $\gamma = -\frac{1}{B}$ and C = Antilog (γA) can be calculated.

METHOD - 3: FITTING THE GENERAL CURVES

С	1	Fit a cu	rve of t	he best	fit of th	e type	$y = ae^{b}$	^{1x} to the following data.	
		х	1	5	7	9	12		
		у	10	15	12	15	21		
		Answe	r: y = 9	9.4751	e ^{0.0590x}	[-	

Η	2	Fit a cu	rve of th	ne best	fit of tl	ne typ	be y = a	e ^{bx} to the	e follow	ing data	l.				
		х	1	2	3	4									
		у	1.65	2.7	4.5	7.3	5								
		Answe	r: y = 1	. 0001	e ^{0.4993}	x									
С	3	Find th	e least s	quare	fit of th	e for	m y = a	$_{0} + a_{1}x^{2}$	to the fo	ollowing	g data.				
		х	-1	0	1	2									
		у	2	5	3	0									
		Answe	$\mathbf{r}:\mathbf{y}=4$	$y = 4.1667 - 1.1111x^2$											
Н	4	Fit a cu	rve of th	ne best	fit of th	ie typ	be $y = a$	x ^b to the	followi	ng data.					
		х	2	3	4	5									
		у	27.8	62.1	110	16	1								
		Answe	r: y = 7	$y = 7.3799 x^{1.9302}$											
С	5	Fit a cu	curve of the best fit of the type $y = ax^b$ to the following data.												
		х	1	2	3	4	5								
		у	0.5	2	4.5	8	12.	5							
		Answe	$\mathbf{r}:\mathbf{y}=0$	$5 x^2$											
С	6	Fit a cu	rve of th	ne best	fit of th	ne typ	be $y = a$	b ^x to the	followi	ng data.					
		х	2	3		4	5	6							
		у	8.3	15.	4 3	3.1	65.2	126.4							
		Answe	$\mathbf{r}:\mathbf{y}=2$. 0494	(1.99	16) ^x									
Н	7	Fit a cu	rve of th	ne best	fit of th	ie typ	be $y = a$	b ^x to the	followi	ng data.					
		x	2	3		4	5	6							
		у	144	172	.8 20)7.4	248.8	298.5							
		Answer: $y = 100.0262 (1.1999)^x$													
Н	8	Fit a curve of the best fit of the type $y = ab^x$ to the following data.													
		x	1	2	3	4	5	6	7	8					
		у	1	1.2	1.8	2.5	5 3.6	4.7	6.6	9.1					
		Answe	$\mathbf{r}:\mathbf{y}=0$. 6823	(1.38	28) ^x									

[9]

Т	9	Using le	ast squa	are me	thod fi	t the c	urve y =	$= ax^2 + \frac{b}{x}$ to the following data.							
		Х	1	2		3	4								
		у	-1.51	0.9	9 8	.88	7.66								
		Answei	Answer: $y = 0.509x^2 - \frac{2.04}{x}$												
Т	10	The pressure P of the gas corresponding to various volume V is measured													
		given by	the fol	lowing	g data, f	it the	data to	the equation $PV^{\gamma} = C$.							
		P 50 60 70 80 90													
		V	64.7	51.3	40.5	25.9	78								
		Answer: $PV^{3.0939} = 11340638.62$													

* * * * * * * * * *