AND Gate

- An AND gate has two or more inputs but only one output.
- The output assumes the logic 1, only when each one of its inputs is at logic 1.
- The output assumes the logic 0 even if one of its inputs is at logic 0.
- The logic symbol & truth table are shown in below figure.
- Notation: \[C = A \cdot B \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

OR Gate

- An OR gate has two or more inputs but only one output.
- The output assumes the logic 0, only when each one of its inputs is at logic 0.
- The output assumes the logic 1 even if one of its inputs is at logic 1.
- The logic symbol & truth table are shown in below figure.
- Notation: \[C = A + B \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

NOT Gate

- A NOT gate (also called an inverter) has only one input & one output.
- It is a device whose output is always the complement of its input.
- The output assumes the logic 1, when its input is at logic 0.
- The output assumes the logic 0, when its input is at logic 1.
- The logic symbol & truth table are shown in below figure.
- Notation: \[C = \bar{A} \]

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

NAND Gate (Universal Gate)

- NAND means NOT AND, i.e. the AND output is NOTed.
- The output assumes the logic 0, only when each one of its inputs is at logic 1.
The output assumes the logic 1 even if one of its inputs is at logic 0.
The logic symbol & truth table are shown in below figure.
Notation:- \(C = A \cdot \overline{B} \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

NOR Gate (Universal Gate)
- NOR means NOT OR, i.e. the OR output is NOTed.
- The output assumes the logic 1, only when each one of its inputs is at logic 0.
- The output assumes the logic 0 even if one of its inputs is at logic 1.
- The logic symbol & truth table are shown in below figure.
- Notation:- \(C = \overline{A} + \overline{B} \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

EX-OR Gate
- An X-OR gate has two or more inputs but only one output.
- The output assumes the logic 1 when one and only one of its inputs assumes a logic 1.
- Under the conditions when both the inputs assume the logic 0, or when both the inputs assume the logic 1, the output assumes a logic 0.
- Since, an X-OR gate produces an output 1 only when the inputs are not equal, it is called an anti-coincidence gate or inequality detector.
- The logic symbol & truth table are shown in below figure.
- Notation:- \(C = A \oplus B \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

EX-NOR Gate
- An X-NOR gate has two or more inputs but only one output.
- The output assumes the logic 0 when one and only one of its inputs assumes a logic 0.
- Under the conditions when both the inputs assume the logic 1, or when both the inputs assume the logic 1, the output assumes a logic 0.
Since, an X-NOR gate produces an output 1 only when the inputs are equal, it is called a coincidence gate or equality detector.

- The logic symbol & truth table are shown in below figure.
- Notation:- \(C = A \oplus B \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Basic Gates as Universal Gates

- **Implementation of NOT, AND & OR gates using NAND gate only**
 1. NOT using NAND gate
 - A NAND gate can also be used as an inverter by tying all its input terminals together and applying the signal to be inverted to the common terminal.

![NAND gate diagram]

 \(A \) \hspace{1cm} \(A' \)

 \((AB)' \) \hspace{1cm} \(((AB)')' = AB \)

 \(A \) \hspace{1cm} \(A' \)

 \(B \)

 \((A'B')' = (A + B) \)

 \(A \) \hspace{1cm} \(A' \)

 \(B \) \hspace{1cm} \(B' \)

 \((A'B')' = (A + B) \)

- **Implementation of NOT, AND & OR gates using NOR gate only**
 1. NOT using NOR gate
 - A NOR gate can also be used as an inverter by tying all its input terminals together and applying the signal to be inverted to the common terminal.
2. OR using NOR gate
 - NOR means NOT OR, i.e. the OR output is NOTed.
 - So, a NOR gate is combination of an OR gate and a NOT gate.

3. AND using NOR gate
 - By inverting inputs in NOR gate, a AND gate is constructed via De Morgan’s theorem.
 - \[\overline{A + B} = \overline{A} \overline{B} = AB \]

Boolean Algebra Laws

- **AND laws**
 1. \(A \cdot 0 = 0 \) (Null Law)
 2. \(A \cdot 1 = A \) (Identity Law)
 3. \(A \cdot A = A \)
 4. \(A \cdot \overline{A} = 0 \)

- **OR laws**
 1. \(A + 0 = A \) (Null Law)
 2. \(A + 1 = 1 \) (Identity Law)
 3. \(A + A = A \)
 4. \(A + \overline{A} = 1 \)

- **Commutative laws**
 1. \(A + B = B + A \)
 2. \(A \cdot B = B \cdot A \)

- **Associative laws**
 1. \((A + B) + C = A + (B + C) \)
 2. \((A \cdot B)C = A(B \cdot C) \)

- **Distributive laws**
 1. \(A(B + C) = AB + AC \)
 2. \(A + BC = (A + B)(A + C) \)
• Redundant Literal Rule
 1. \(A + \overline{AB} = A + B \)
 2. \(A(A + B) = AB \)

• Idempotence laws
 1. \(A \cdot A = A \)
 2. \(A + A = A \)

• Absorption laws
 1. \(A + AB = A \)
 2. \(A(A + B) = A \)

De Morgan’s Theorem

1. Law 1: \(A + B + C = \overline{A \overline{B} \overline{C}} \)
 • This law states that the complement of a sum of variables is equal to the product of their individual complements.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>A+B+C</th>
<th>(A+B+C)’</th>
<th>A’</th>
<th>B’</th>
<th>C’</th>
<th>A’B’C’</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

 • Hence, Law 1 is proved from the above truth table.

2. Law 2: \(\overline{A} \overline{B} \overline{C} = \overline{A} + \overline{B} + \overline{C} \)
 • This law states that the complement of a product of variables is equal to the sum of their individual complements.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>A B C</th>
<th>(A B C)’</th>
<th>A’</th>
<th>B’</th>
<th>C’</th>
<th>A’+B’+C’</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

 Hence, Law 2 is proved from the above truth table.
Reduction of Boolean Expression

1. \[f = A[B + \bar{C} (\bar{A}B + \bar{A}C)] \]
 \[= A[\bar{B} + \bar{C} (\bar{A}B + \bar{A}C)] \quad \text{(De Morgan's Theorem)} \]
 \[= A[\bar{B} + \bar{C} (A + \bar{B})(A + C)] \quad \text{(De Morgan's Theorem)} \]
 \[= A[\bar{B} + \bar{C} (A\bar{A} + \bar{A}C + \bar{B}A + \bar{B}C)] \quad \text{(Distributive Law)} \]
 \[= A[\bar{B} + \bar{C} (A + \bar{A}C + \bar{A}B + \bar{B}C)] \quad \text{(Distributive Law)} \]
 \[= A\bar{B} + A\bar{A}C + A\bar{A}B\bar{C} \quad \text{(De Morgan's Theorem)} \]
 \[= A\bar{B} + A\bar{A}C + A\bar{A}B\bar{C} \quad \text{(Distributive Law)} \]

2. \[f = A + B[AC + (B + \bar{C})D] \]
 \[= A + B[AC + BD + \bar{C}D] \quad \text{(Distributive Law)} \]
 \[= A + BAC + BBD + B\bar{C}D \quad \text{(Distributive Law)} \]
 \[= A + ABC + BD + B\bar{C}D \quad \text{(Distributive Law)} \]
 \[= A(1 + BC) + BD(1 + \bar{C}) \quad \text{(Distributive Law)} \]
 \[= A \cdot 1 + BD \cdot 1 \quad \text{(Distributive Law)} \]
 \[= A + BD \quad \text{(Distributive Law)} \]

Common Number Systems

- There are mainly four number systems which are used in digital electronics platform.
 1. Decimal number system
 o The decimal number system contains ten unique symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
 o The base or radix is 10.
 o 9’s and 10’s complements are possible for any decimal number.

 2. Binary number system
 o The binary number system contains two unique symbols 0, 1.
 o The base or radix is 2.
 o 1’s and 2’s complements are possible for any binary number.

 3. Octal number system
 o The octal number system contains eight unique symbols 0, 1, 2, 3, 4, 5, 6, 7.
 o The base or radix is 8.
 o 7’s and 8’s complements are possible for any octal number.

 4. Hexadecimal number system
 o The hexadecimal number system contains sixteen unique symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 o The base or radix is 16.
 o 15’s and 16’s complements are possible for any hexadecimal number.
In general, if radix or base of a number system is \(r\), then there is possibility of \(r\)'s complement and \((r-1)\)'s complement of a number.

Decimal to Binary Conversion

- The decimal integer is converted to the binary integer number by successive division by 2, and the decimal fraction is converted to the binary fraction number by successive multiplication by 2.
- In the successive division-by-2 method, the given decimal integer number is successively divided by 2 till the quotient is 0.
- The remainders read from bottom to top give the equivalent binary integer number.
- The remainders read from top to bottom give the equivalent binary fraction number.
- To convert a mixed number to binary, convert the integer and fraction parts separately to binary and then combine them.

Example: \((125.6875)_{10} = (?)_2\)

<table>
<thead>
<tr>
<th>2</th>
<th>125</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>62</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[0.6875 \times 2 = 1.3750\]
\[0.3750 \times 2 = 0.7500\]
\[0.7500 \times 2 = 1.5000\]
\[0.5000 \times 2 = 1.0000\]

Hence, \((125.6875)_{10} = (111101.1011)_2\)

Binary to Decimal Conversion

- Binary numbers may be converted to their decimal equivalents by the positional weights method.
- In this method, each binary digit of the number is multiplied by its position weight \(2^n\), where \(n\) is the weight of the bit) and the product terms are added to obtain the decimal number.

Example: \((101011.11)_2 = (?)_{10}\)

\[
1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}
\]

\[= 32 + 0 + 8 + 0 + 2 + 1 + 0.5 + 0.25\]

\[= 42.75\]

Hence, \((101011.11)_2 = (43.75)_{10}\)
Decimal to Octal Conversion

- The decimal integer is converted to the octal integer number by successive division by 8, and the decimal fraction is converted to the octal fraction number by successive multiplication by 8.
- In the successive division-by-8 method, the given decimal integer number is successively divided by 8 till the quotient is 0.
- The remainders read from bottom to top give the equivalent octal integer number.
- In the successive multiplication-by-8 method, the given decimal fraction and the subsequent fractions are successively multiplied by 8, till the fraction part of the product is 0 or till the desired accuracy is obtained.
- The integers read from top to bottom give the equivalent octal integer number.
- To convert a mixed number to octal, convert the integer and fraction parts separately to octal and then combine them.

Example: \((125.6875)_{10} = (\)_8\)

\[
\begin{array}{c|ccc}
8 & 125 & 5 \\
8 & 15 & 7 \\
8 & 1 & 1 \\
8 & 0 & 0 \\
\end{array}
\]

\[
0.6875 \times 8 = 5.5000 \\
0.5000 \times 8 = 4.0000 \\
\text{Hence, } (125.6875)_{10} = (175.54)_{8}
\]

Octal to Decimal Conversion

- Octal numbers may be converted to their decimal equivalents by the positional weights method.
- In this method, each octal digit of the number is multiplied by its position weight \((8^n, \text{ where } n \text{ is the weight of the bit})\) and the product terms are added to obtain the decimal number.

Example: \((724.25)_8 = (\)_{10}\)

\[
= 7 \times 8^2 + 2 \times 8^1 + 4 \times 8^0 + 2 \times 8^{-1} + 5 \times 8^{-2} \\
= 7 \times 64 + 2 \times 8 + 4 \times 1 + 0.25 + 0.0781 \\
= 448 + 16 + 4 + 0.25 + 0.0781 \\
= 468.3281
\]

Hence, \((724.25)_8 = (468.3281)_{10}\)

Decimal to Hexadecimal Conversion

- The decimal integer is converted to the hexadecimal integer number by successive division by 16, and the decimal fraction is converted to the hexadecimal fraction number by successive multiplication by 16.
- In the successive division-by-16 method, the given decimal integer number is successively divided by 16 till the quotient is 0.
- The remainders read from bottom to top give the equivalent hexadecimal integer number.
In the successive multiplication-by-16 method, the given decimal fraction and the subsequent
fractions are successively multiplied by 16, till the fraction part of the product is 0 or till the desired
accuracy is obtained.

- The integers read from top to bottom give the equivalent hexadecimal integer number.
- To convert a mixed number to hexadecimal, convert the integer and fraction parts separately to
hexadecimal and then combine them.

Example:- \((2598.675)_{10} = \text{XNA}\)

<table>
<thead>
<tr>
<th>16</th>
<th>2598</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>162</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>10(A)</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
0.675 \times 16 &= 10.8000 \\
10(A) + 0.8000 &
\end{align*}
\]

\[
\begin{align*}
0.800 \times 16 &= 12.8000 \\
12(C) + 0.8000 &
\end{align*}
\]

\[
\begin{align*}
0.800 \times 16 &= 12.8000 \\
12(C) + 0.8000 &
\end{align*}
\]

Hence, \((2598.675)_{10} = (A26.ACCC)_{16}\)

Hexadecimal to Decimal Conversion

- Hexadecimal numbers may be converted to their decimal equivalents by the positional weights
 method.
- In this method, each hexadecimal digit of the number is multiplied by its position weight \((16^n,\)
 where \(n\) is the weight of the bit) and the product terms are added to obtain the decimal number.

Example:- \((A0F9.0EB)_{16} = \text{XNA}\)

\[
\begin{align*}
&= 10 \times 16^3 + 0 \times 16^2 + 15 \times 16^1 + 9 \times 16^0 + 0 \times 16^{-1} + 14 \times 16^{-2} + 11 \times 16^{-3} \\
&= 40960 + 0 + 240 + 9 + 0 + 0.0546 + 0.0026 \\
&= 41209.0572
\end{align*}
\]

Hence, \((A0F9.0EB)_{16} = (41209.0572)_{10}\)

Octal to Binary Conversion

- To convert a given octal number to a binary, just replace each octal digit by its 3-bit binary
equivalent as per below table.

<table>
<thead>
<tr>
<th>Octal Number</th>
<th>Binary Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
</tr>
</tbody>
</table>
• Example: \((367.52)_8 = (_)_2 \\
 = 011 \ 110 \ 111.101 \ 010 \\
 = 11110111.101011 \\
Hence, \((367.52)_8 = (11110111.101011)_2 \)

Binary to Octal Conversion
• To convert a binary number to an octal number, starting from the binary point make groups of 3 bits each (i.e. from point (\(. \)) in binary number, group of 3 bits in left side and group of 3 bits in right side), if there are not 3 bits available at last, just stuff “0” to make 3 bits group.
• Replace each 3-bit binary group by the equivalent octal digit.

• Example: \((110101.101010)_2 = (_)_8 \\
 = 110 \ 101 . 101 \ 010 \\
 = 65.52 \\
Hence, \((110101.101010)_2 = (65.52)_8 \)

Hexadecimal to Binary Conversion
• To convert a given hexadecimal number to a binary, just replace each hexadecimal digit by its 4-bit binary equivalent as per below table.

<table>
<thead>
<tr>
<th>Hexadecimal Number</th>
<th>Binary Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
</tr>
</tbody>
</table>
Example: \((3A9.E.B0D)_{16} = (\text{ })_2\)

\[
\begin{align*}
0011 & \quad 1010 & \quad 1001 & \quad 1110 & . & \quad 1011 & \quad 0000 & \quad 1101 \\
= 11101010011110.101100001101
\end{align*}
\]

Hence, \((3A9.E.B0D)_{16} = (11101010011110.101100001101)_{2}\)

Binary to Hexadecimal Conversion

- To convert a binary number to a hexadecimal number, starting from the binary point make groups of 4 bits each (i.e. from point (".")) in binary number, group of 4 bits in left side and group of 4 bits in right side), if there are not 4 bits available at last, just stuff "0" to make 4 bits group.
- Replace each 4-bit binary group by the equivalent hexadecimal digit.

Example: \((01011111011.01111111)_{2} = (\text{ })_{16}\)

\[
\begin{align*}
0010 & \quad 1111 & \quad 1011 & . & \quad 0111 & \quad 1100 \\
= & \quad 2FB.7C
\end{align*}
\]

Hence, \((01011111011.01111111)_{2} = (2FB.7C)_{16}\)

Octal to Hexadecimal Conversion

- To convert an octal number to hexadecimal, the simplest way is to first convert the given octal number to binary and then the binary number to hexadecimal. (i.e. first from table of 3-bit and then table of 4-bit)

Example: \((756.603)_{8} = (\text{ })_{16}\)

\[
\begin{align*}
7 & \quad 5 & \quad 6 & . & \quad 6 & \quad 0 & \quad 3 \\
111 & \quad 101 & \quad 110 & . & \quad 110 & \quad 000 & \quad 011 \\
= & \quad 0001 & \quad 1110 & \quad 1110 & . & \quad 1100 & \quad 0001 & \quad 1000 \\
& \quad 1 & \quad E & \quad E & . & \quad C & \quad 1 & \quad 8
\end{align*}
\]

Hence, \((756.603)_{8} = (1EE.C18)_{16}\)

Hexadecimal to Octal Conversion

- To convert a hexadecimal number to octal, the simplest way is to first convert the given hexadecimal number to binary and then the binary number to octal. (i.e. first from table of 4-bit and then table of 3-bit)

Example: \((B9F.AE)_{16} = (\text{ })_{8}\)

\[
\begin{align*}
B & \quad 9 & \quad F & . & \quad A & \quad E \\
1011 & \quad 1001 & \quad 1111 & . & \quad 1010 & \quad 1110
\end{align*}
\]
Accuracy in Binary Number Conversion

- Example:- Convert \((0.252)_{10}\) to binary with an error less than 1%.
- Absolute value of allowable error is found by calculating 1% of the number.
 \[E_{allow} = 0.01 \times 0.252 = 0.00252_{10} \]

- Maximum error due to truncation is set to be less than allowable error by solving from \(E_{10} = 2^{-n}\)
 This equation is written as \(2^{-n} < 0.00252\)

- Inverting both sides of the inequality
 \[2^n > 397 \]

- Taking \(\log\) of both sides and solving for \(n\)
 \[n \log 2 = \log 397 \]
 \[n = \frac{\log 397}{\log 2} = 8.63 \approx 9 \text{ (next largest integer)} \]

- This indicates that the use of 9 bits in the binary number will guarantee an error less than 1%.
- So, the conversion is carried out to 9 places.
 \[
 \begin{array}{c|c}
 \hline
 0.252 \times 2 & = 0.504 & 0 \\
 0.504 \times 2 & = 1.008 & 1 \\
 0.008 \times 2 & = 0.016 & 0 \\
 0.016 \times 2 & = 0.032 & 0 \\
 0.032 \times 2 & = 0.064 & 0 \\
 0.064 \times 2 & = 0.128 & 0 \\
 0.128 \times 2 & = 0.256 & 0 \\
 0.256 \times 2 & = 0.512 & 0 \\
 0.512 \times 2 & = 1.024 & 1 \\
 \hline
 \end{array}
 \]

- Therefore, \((0.252)_{10} = (0.010000001)_{2}\).
Complement Forms

- 9’s Complement
 - The 9’s complement of a decimal number is obtained by subtracting each digit of that decimal number from 9.
 - Example: 782.54

 \[
 \begin{array}{c}
 9 9 9 . 9 9 \\
 - 7 8 2 . 5 4 \\
 \hline
 2 1 7 . 4 5 (9’s \text{ complement of 782.54})
 \end{array}
 \]

- 10’s Complement
 - The 10’s complement of a decimal number is obtained by adding a 1 to its 9’s complement.
 - Shortcut: Subtract LSB (Least Significant Bit) from 10 and rest of the digits from 9.
 - Example: 1056.074

 \[
 \begin{array}{c}
 9 9 9 9 . 9 9 9 \\
 - 1 0 5 6 . 0 7 4 \\
 \hline
 8 9 4 3 . 9 2 5 \\
 + 1 \\
 8 9 4 3 . 9 2 6 (10’s \text{ complement of 1056.074})
 \end{array}
 \]

- 1’s Complement
 - The 1’s complement of a binary number is obtained by subtracting each digit of that binary number from 1.
 - Shortcut: Change 1’s to 0’s and 0’s to 1’s in binary number.
 - Example: 101101.1001

 \[
 \begin{array}{c}
 1 1 1 1 1 1 . 1 1 1 1 \\
 - 1 0 1 1 0 1 . 1 0 0 1 \\
 \hline
 0 1 0 0 1 0 . 0 1 1 0 (1’s \text{ complement of 101101.1001})
 \end{array}
 \]

- 2’s Complement
 - The 2’s complement of a binary number is obtained by adding a 1 to its 1’s complement.
 - Shortcut: A shortcut to manually convert a binary number into its 2’s complement is to start at the least significant bit (LSB), and copy all the zeros, working from LSB toward the most significant bit (MSB) until the first 1 is reached; then copy that 1, and flip all the remaining bits.
 - Example: 110101.10100

 \[
 \begin{array}{c}
 1 1 1 1 1 1 . 1 1 1 1 \\
 - 1 1 0 1 0 1 . 1 0 1 0 0 \\
 \hline
 0 0 1 0 1 0 . 0 1 0 1 1 \\
 + 1 \\
 0 0 1 0 1 0 . 0 1 1 0 0 (2’s \text{ complement of 110101.10100})
 \end{array}
 \]
Signed Number Representation

- The 2’s complement system for representing signed numbers works like this:
 1) If the number is positive, the magnitude is represented in its true binary form and a sign bit 0 is placed in front of the MSB.
 2) If the number is negative, the magnitude is represented in its 2’s complement form and a sign bit 1 is placed in front of the MSB.

- Example:--
 (1) Express -45 in 8-bit 2’s complement form.
 Ans. +45 in 8-bit form is 00101101 (By taking decimal to binary conversion).
 take 2’s complement of it, 11010011
 Hence, -45 in 2’s complement form is 11010011

 (2) Express -73.25 in 12-bit 2’s complement form.
 Ans. +73.25 in 12-bit form is 01001001.1100 (By taking decimal to binary conversion).
 take 2’s complement of it, 10110110.0100
 Hence, -73.25 in 2’s complement form is 10110110.0100

Subtraction using Complement Forms

- Subtraction using 9’s complement form
 - To perform decimal subtraction using the 9’s complement method, obtain 9’s complement of the subtrahend and add it to the minuend.
 - Call this number the intermediate result.
 - If there is a carry, it indicates that the answer is positive.
 - Add the carry to the LSD of this result to get the answer.
 - If there is no carry, it indicates that the answer is negative and the intermediate result is its 9’s complement.
 - Take the 9’s complement of this result and place a negative sign in front to get the answer.

- Example:--
 (1) 745.81 – 436.62
 Ans. 7 4 5 . 8 1
 - 4 3 6 . 6 2
 3 0 9 . 1 9
 + 5 6 3 . 3 7 (9’s complement of 436.62)
 13 0 9 . 1 8 (Intermediate result)
 + 1
 3 0 9 . 1 9 (Answer)

 (2) 436.62 – 745.81
 Ans. 4 3 6 . 6 2
 - 7 4 5 . 8 1
 3 0 9 . 1 9
 + 2 5 4 . 1 8 (9’ complement of 745.81)
 6 9 0 . 8 0 (Intermediate result)

 There is no carry indicating that the answer is negative. So, take the 9’s complement of the intermediate result and put a minus sign. Therefore, the answer is -309.19
- **Subtraction using 10’s complement form**
 - To perform decimal subtraction using the 10’s complement method, obtain the 10’s complement of the subtrahend and add it to the minuend.
 - If there is a carry, ignore it.
 - The presence of the carry indicates that the answer is positive; the result obtained is itself the answer.
 - If there is no carry, it indicates that the answer is negative and the result obtained is its 10’s complement.
 - Obtain the 10’s complement of the result and place a negative sign in front to get the answer.

 - **Example:**
 - (1) $2928.54 - 416.73$
 - Ans. $2 \ 9 \ 2 \ 8 \ . \ 5 \ 4$
 - $+9 \ 5 \ 8 \ 3 \ . \ 2 \ 7$ (10’s complement of 416.73)
 - $1 \ 2 \ 5 \ 1 \ 1 \ . \ 8 \ 1$ (Ignore the carry)
 - (2) $416.73 - 2928.54$
 - Ans. $0 \ 4 \ 1 \ 6 \ . \ 7 \ 3$
 - $+7 \ 0 \ 7 \ 1 \ . \ 4 \ 6$ (10’s complement of 2928.54)
 - $7 \ 4 \ 8 \ 8 \ . \ 1 \ 9$ (No carry)

 There is no carry indicating that the answer is negative. So, take the 10’s complement of the intermediate result and put a minus sign. Therefore, the answer is -2511.81

- **Subtraction using 1’s complement form**
 - To perform binary subtraction using the 1’s complement method, obtain 1’s complement of the subtrahend and add it to the minuend.
 - Call this number the intermediate result.
 - If there is a carry, it indicates that the answer is positive.
 - Add the carry to the LSB of this result to get the answer.
 - If there is no carry, it indicates that the answer is negative and the intermediate result is its 1’s complement.
 - Take the 1’s complement of this result.

 - **Example:**
 - (1) $11010 - 1101$
 - Ans. $1 \ 1 \ 0 \ 1 \ 0$
 - $+1 \ 0 \ 0 \ 1 \ 0$ (1’s complement)
 - $1 \ 0 \ 1 \ 0 \ 0$ (Intermediate result)
 - $0 \ 1 \ 1 \ 0 \ 1$ (Answer)
 - (2) $100 - 110000$
 - Ans. $0 \ 0 \ 0 \ 1 \ 0 \ 0$
 - $+1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1$ (1’s complement)
 - $1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1$ (Intermediate result)

 There is no carry. The MSB is 1. Hence, the answer is negative. Take the 1’s complement of the remaining bits. So, it is 101100 (negative).
- Subtraction using 2’s complement form
 - To perform binary subtraction using the 2’s complement method, obtain the 2’s complement of the subtrahend and add it to the minuend.
 - If there is a carry, ignore it.
 - The presence of the carry indicates that the answer is positive; the result obtained is itself the answer.
 - If there is no carry, it indicates that the answer is negative and the result obtained is its 2’s complement.
 - Obtain the 2’s complement of the result.

 - Example:
 (1) \(11011 - 1101\)
 Ans. \(1 1 0 1 1\)
 \[\begin{array}{c}
 - 0 1 1 0 1 \\
 \hline
 1 1 0 1 1
 \end{array}\]
 \(+ 1 0 0 1 1\) (2’s complement)
 \[\begin{array}{c}
 1 0 1 1 0 1 \\
 \hline
 1 1 0 1 1
 \end{array}\] (Ignore the carry, result is positive)

 (2) \(100 - 11000\)
 Ans. \(0 0 0 1 0 0\)
 \[\begin{array}{c}
 - 1 1 0 0 0 0 \\
 \hline
 1 1 0 0 0 0
 \end{array}\] (2’s complement)
 \[\begin{array}{c}
 + 1 0 1 0 0 0 0 0 \\
 \hline
 1 0 1 0 1 0 0 0
 \end{array}\] (Result is negative)

 There is no carry. The MSB is 1. Hence, the answer is negative. Take its 2’s complement and put a minus sign. So it is, 101100 (negative).

Binary Operation

- Binary Addition
 \(0 + 0 = 0; \quad 0 + 1 = 1; \quad 1 + 0 = 1; \quad 1 + 1 = 10 \text{ (i.e. 0 with a carry of 1)}; \quad 1 + 1 + 1 = 11\)

 Example:- Add the binary numbers 1101.101 and 111.011.

 \[\begin{array}{c}
 1 1 1 1 1 1 \leftarrow \text{Carry} \\
 1 1 0 1 . 1 0 1 \\
 + 0 1 1 1 1 . 0 1 1 \\
 \hline
 1 0 1 0 1 . 0 0 0
 \end{array}\]

- Binary Subtraction
 \(0 - 0 = 0; \quad 1 - 1 = 0; \quad 1 - 0 = 1; \quad 0 - 1 = 1 \text{ with a borrow of 1.}\)

 Example:- Subtract 111.111 from 1010.01

 \[\begin{array}{c}
 0 1 1 0 1 1 \leftarrow \text{Borrow} \\
 1 0 . 0 \div 0 . 0 \div 0 \\
 - 0 1 1 1 . 1 1 1 \\
 \hline
 0 0 1 0 . 0 1 1
 \end{array}\]
1 – Logic Function Realization with MSI Circuits

- **Binary Multiplication**
 Example: Multiply 1011.101 by 101.01.

 \[
 \begin{array}{c}
 \text{1011.101} \\
 \times \text{101.010} \\
 \hline
 \text{1011110100001}
 \end{array}
 \]

 Therefore, \(1011.101 \times 101.010 = 111101.00001\)

- **Binary Division**
 Example: Divide 1011011 by 110.

 \[
 \begin{array}{c}
 \text{11011101} \\
 \text{110} \\
 \hline
 \text{110}
 \end{array}
 \]

 Therefore, \(101101 / 110 = 111.1\)

BCD Code

- In this code, each decimal digit, 0 through 9, is coded by 4-bit binary number.
- It is a weighted code and is also sequential. Therefore, it is useful for mathematical operations.
- The main advantage of this code is its ease of conversion to and from decimal.
- It is less efficient than the pure binary, in the sense that it requires more bits.
- For example, the decimal number 14 can be represented as 1110 in pure binary but as 0001 0100 in 8421 BCD code.
- Another disadvantage of the BCD code is that, arithmetic operations are more complex than they are in pure binary.
- There are six illegal combinations 1010, 1011, 1100, 1101, 1110 and 1111 in this code.

BCD Addition

- If there is no carry and the sum term is not an illegal code, no correction is needed.
- If there is a carry out of one group to the next group, or if the sum term is illegal code, then 6 (0110) is added to the sum term of that group and the resulting carry is added to the next group.

Example:

\[
\begin{align*}
\text{Ans.} & \quad 25 + 13 \\
& \quad \begin{array}{c}
0010 \\
+0001 \\
\hline
0011
\end{array} \\
& \quad \text{(25 in BCD)} \\
& \quad \begin{array}{c}
0001 \\
+0111 \\
\hline
0100
\end{array} \\
& \quad \text{(13 in BCD)}
\end{align*}
\]

\[
38 \quad 0011 \\
\quad 1000 \quad \text{(No carry, no illegal code. So, this is the correct sum)}
\]
(2) \[679.6 + 536.8 \]
Ans. \[679.6 \] + \[536.8 \] = \[1110 \ 0111 \ 1001 \ 0110 \] (679.6 in BCD)
\[+ 0110 \ 0011 \ 0110 \ 1000 \] (536.8 in BCD)
\[1216.4 \]
\[1011 \ 1010 \ 1111 \ 1110 \] (All are illegal codes)
\[+ 0110 \ + 0110 \ + 0110 \ + 0110 \] (Add 0110 to each)
\[0001 \ 0010 \ 0001 \ 0110 \ 0100 \] (Corrected sum = 1216.4)

BCD Subtraction
- If there is no borrow from the next higher group then no correction is required.
- If there is a borrow from the next group, then \(6_{10} \) (0110) is subtracted from the difference term of this group.
- Example:-

(1) \[38 - 15 \]
Ans. \[38 \] - \[15 \] = \[0011 \ 1000 \] (38 in BCD)
\[- 0001 \ 0101 \] (15 in BCD)
\[23 \]
\[0010 \ 0011 \] (No borrow. So, this is the correct difference.)

(2) \[206.7 - 147.8 \]
Ans. \[206.7 \] - \[147.8 \] = \[0010 \ 0000 \ 0110 \ 0111 \] (206.7 in BCD)
\[- 0001 \ 0100 \ 0111 \ 1000 \] (147.8 in BCD)
\[58.9 \]
\[0000 \ 1011 \ 1110 \ 1111 \] (Borrows are present, subtract 0110)
\[- 0110 \ - 0110 \ - 0110 \]
\[0101 \ 1000 \ 1001 \] (Corrected difference = 58.9)

Excess-3 Code
- The Excess-3 code, also called XS-3, is a non-weighted BCD code.
- This code derives its name from the fact that each binary code word is the corresponding 8421 code word plus 0011(3).
- It is sequential code and, therefore, can be used for arithmetic operations.
- It is a self-complementing code.
- The XS-3 code has six invalid states 0000, 0001, 0010, 1101, 1110 and 1111.

XS-3 Addition
- If there is no carry out from the addition of any of the 4-bit groups, subtract 0011 from the sum term of those groups.
- If there is a carry out, add 0011 to the sum term of those groups.
- Example:-

(1) \[247.6 + 359.4 \]
Ans. \[247.6 \] + \[359.4 \] = \[0101 \ 0111 \ 1010 \ 1001 \] (247.6 in XS-3)
\[+ 0110 \ 1000 \ 1100 \ 0111 \] (359.4 in XS-3)
\[607.0 \]
\[1100 \ 0000 \ 0111 \ 0000 \] (Add 0011 to 0000, 0111, 0000)
\[- 0011 + 0011 + 0011 + 0011 \]
\[1001 \ 0011 \ 1010 \ 0011 \] (Corrected sum in XS-3 = 607.0)

XS-3 Subtraction
- If there is no borrow from the next 4-bit group, add 0011 to the difference term of such groups.
- If there is a borrow, subtract 0011 from the difference term.
Example: -
(1) 267 – 175
Ans. 267 0101 1001 1010 (267 in XS-3)
- 175 -0100 1010 1000 (175 in XS-3)
092 0000 1111 0010 (Subtract 0011 from 1111 and
+ 0011 - 0011 + 0011 add 0011 to 0000 & 0010)
0011 1100 0101 (Corrected difference in XS-3 = 92)

Gray Code

- The gray code is a non-weighted code.
- It is a cyclic code because successive code words in this code differ in one bit position only, i.e. it is a unit distance code.
- It is also a reflective code.
- The n least significant bits for \(2^n\) through \(2^{n+1}-1\) are the mirror images of those for 0 through \(2^n-1\).
- An N-bit gray code can be obtained by reflecting an N-1 bit code about an axis at the end of the code, and putting the MSB of 0 above the axis and the MSB of 1 below the axis.
- One reason for the popularity of the gray code is its ease of conversion to and from binary.
- Reflection of gray code is shown in table.

<table>
<thead>
<tr>
<th>Gray Code</th>
<th>Decimal</th>
<th>4-bit binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-bit</td>
<td>2-bit</td>
<td>3-bit</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>000</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>001</td>
</tr>
<tr>
<td>11</td>
<td>011</td>
<td>0011</td>
</tr>
<tr>
<td>10</td>
<td>010</td>
<td>010</td>
</tr>
<tr>
<td>110</td>
<td>0110</td>
<td>0110</td>
</tr>
<tr>
<td>111</td>
<td>0111</td>
<td>0111</td>
</tr>
<tr>
<td>101</td>
<td>0101</td>
<td>0101</td>
</tr>
<tr>
<td>100</td>
<td>0100</td>
<td>0100</td>
</tr>
<tr>
<td>1100</td>
<td>1100</td>
<td>8</td>
</tr>
<tr>
<td>1101</td>
<td>1101</td>
<td>9</td>
</tr>
<tr>
<td>1111</td>
<td>1111</td>
<td>10</td>
</tr>
<tr>
<td>1110</td>
<td>1110</td>
<td>11</td>
</tr>
<tr>
<td>1010</td>
<td>1010</td>
<td>12</td>
</tr>
<tr>
<td>1011</td>
<td>1011</td>
<td>13</td>
</tr>
<tr>
<td>1001</td>
<td>1001</td>
<td>14</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>15</td>
</tr>
</tbody>
</table>

Binary to Gray Conversion

- If an n-bit binary number is represented by \(B_n B_{n-1} ... B_1\) and its gray code equivalent \(G_n G_{n-1} ... G_1\), where \(B_n\) and \(G_n\) are the MSBs, then the gray code bits are obtained from the binary code as follows:

\[
G_n = B_n \\
G_{n-1} = B_n \oplus B_{n-1} \\
G_{n-2} = B_{n-1} \oplus B_{n-2} \\
...... \\
G_1 = B_2 \oplus B_1
\]

- The conversion procedure is as follows:
 1. Record the MSB of the binary as the MSB of the gray code.
 2. Perform X-ORing between the MSB of the binary and the next bit in binary. This answer is the next bit of the gray code.

Krunal D. Vyas, CE Department | 3130704 – Digital Fundamentals
3. Perform X-ORing between 2nd bit of the binary and 3rd bit of the binary, the 3rd bit with the 4th bit, and so on.

4. Record the successive answer bits as the successive bits of the gray code until all the bits of the binary number are exhausted.

- Example:- Convert the binary 1001 to Gray code.
\[
\text{Ans.}: 1 \oplus 0 \oplus 0 \oplus 1
\]

\[
\begin{array}{cccc}
1 & 1 & 0 & 1
\end{array}
\]

\textbf{Gray to Binary Conversion}

- If an \(n \)-bit gray number is represented by \(G_n \ G_{n-1} \ldots G_1 \) and its binary code equivalent \(B_n \ B_{n-1} \ldots B_1 \), where \(G_n \) and \(B_n \) are the MSBs, then the binary bits are obtained from the gray bits as follows:

\[
\begin{array}{cccc}
B_n = G_n & B_{n-1} = B_n \oplus G_{n-1} & B_{n-2} = B_{n-1} \oplus G_{n-2} & \ldots & B_0 = B_1 \oplus G_1 \\
0 & 1 & 0 & 1
\end{array}
\]

- The conversion procedure is as follows:
 1. The MSB of the binary number is the same as the MSB of the gray code number.
 2. Perform X-ORing between the MSB of the binary and next significant bit of gray code. This answer is the next bit of binary.
 3. Perform X-ORing between the 2nd bit of the binary and 3rd bit of the gray code, the 3rd bit of the binary with the 4th bit of gray code, and so on.
 4. Record the successive answers as the successive bits of the binary until all the bits of the gray code are exhausted.

- Example:- Convert the gray code 1101 to binary.
\[
\text{Ans.}: 1 \oplus 1 \oplus 0 \oplus 1
\]

\[
\begin{array}{cccc}
1 & 1 & 0 & 1
\end{array}
\]

\textbf{Error Detecting Code}

- When binary data is transmitted and processed, it is susceptible to noise that can alter or distort its contents.
- The 1s may get changed to 0s and 0s to 1s.
- Because digital systems must be accurate to the digit, errors can pose a serious problem.
- Several schemes have been devised to detect the occurrence of a single-bit error in a binary word, so that whenever such an error occurs the concerned binary word can be corrected and retransmitted.

\textbf{Parity}

- The simplest technique for detecting errors is that of adding an extra bit, known as the \textit{parity} bit, to each word being transmitted.
- There are two types of parity – odd parity and even parity.
- For odd parity, the parity bit is set to a 0 or a 1 at the transmitter such that the total number of 1 bits in the word including the parity bit is an odd number.
- For even parity, the parity bit is set to a 0 or a 1 at the transmitter such that the total number of 1 bits in the word including the parity bit is an even number.
When the digital data is received, a parity checking circuit generates an error signal if the total number of 1s is even in an odd-parity system or odd in an even-parity system.

This parity check can always detect a single-bit error but can not detect two or more errors within the same word.

In any practical system, there is always a finite probability of the occurrence of single error.

Odd parity is used more often than even parity because even parity does not detect the situation where all 0s are created by a short-circuit or some other fault condition.

Example:- If Data is 1011010, then even parity must be 0 and odd parity must be 1.

Check Sums

- Simple parity cannot detect two errors within the same word.
- One way of overcoming this difficulty is to use a sort of two-dimensional parity.
- As each word is transmitted, it is added to the sum of the previously transmitted words, and the sum retained at the transmitter end.
- At the end of transmission, the sum (called the check sum) up to that time is sent to the receiver.
- The receiver can check its sum with the transmitted sum.
- If the two sums are the same, then no errors were detected at the receiver end.
- If there is an error, the receiving location can ask for retransmission of the entire data.
- This is the type of transmission used in teleprocessing systems.

Block Parity

- When several binary words are transmitted or stored in succession, the resulting collection of bits can be regarded as a block of data, having rows and columns.
- Parity bits can then be assigned to both rows and columns.
- This scheme makes it possible to correct any single error occurring in a data word and to detect any two errors in a word.
- This technique also called word parity, is widely used for data stored on magnetic tapes.
- For example, six 8-bit words in succession can be formed into a 6x8 block for transmission.
- Parity bits are added so that odd parity is maintained both row-wise and column-wise and the block is transmitted as a 7x9 block as shown in Figure 1.
- At the receiving end, parity is checked both row-wise and column-wise and suppose errors are detected as shown in Figure 2.
- These single-bit errors detected can be corrected by complementing the error bit.
- In Figure 2, parity errors in the 3rd row and 5th column mean that the 5th bit in 3rd row is in error.
- It can be corrected by complementing it.
- Two errors as shown in Figure 3 can only be detected but not corrected.
- In Figure 3, parity errors are observed in both columns 2 and 4.
- It indicated that in one row there two errors.
Error Correcting Code

- A code is said to be an error-correcting code, if the correct code word can always be deducted from an erroneous word.
- For a code to be a single-bit error-correcting code, the minimum distance of that code must be three.
- The minimum distance of a code is the smallest number of bits by which any two code words must differ.
- A code with minimum distance of three can not only correct single-bit errors, but also detect (but cannot correct) two-bit errors.
- The key to error correction is that it must be possible to detect and locate erroneous digits.
- If the location of an error correction is determined, then by complementing the erroneous digit, the message can be corrected.
- 7-bit hamming code is one type of error-correcting code.

The 7-bit hamming code

- To transmit four data bits, three parity bits located at positions 2^0, 2^1, and 2^2 from left are added to make a 7-bit code word which is then transmitted.
- The word format would be as shown below:

$$P_1 \ P_2 \ D_3 \ P_4 \ D_5 \ D_6 \ D_7$$

Where the D bits are the data bits and the P bits are the parity bits.
- P_1 is to be set to 0 or 1 so that it establishes even parity bits 1, 3, 5, and 7 (i.e. $P_1 \ D_3 \ D_5 \ D_7$).
- P_2 is to be set to 0 or 1 so that it establishes even parity bits 2, 3, 6, and 7 (i.e. $P_2 \ D_3 \ D_6 \ D_7$).
- P_4 is to be set to 0 or 1 so that it establishes even parity bits 4, 5, 6, and 7 (i.e. $P_4 \ D_5 \ D_6 \ D_7$).

Example:-

(1) Encode data bits 1101 into the 7-bit even-parity hamming code.

Ans: The bit pattern is $P_1 \ P_2 \ D_3 \ P_4 \ D_5 \ D_6 \ D_7 = P_1 \ P_2 \ 1 \ P_4 \ 1 \ 0 \ 1$

Bits 1, 3, 5, 7 (i.e. $P_1 \ 1 \ 1 \ 1$) must have even parity. So, P_1 must be a 1.
Bits 2, 3, 6, 7 (i.e. $P_2 \ 1 \ 0 \ 1$) must have even parity. So, P_2 must be a 0.
Bits 4, 5, 6, 7 (i.e. $P_4 \ 1 \ 0 \ 1$) must have even parity. So, P_4 must be a 0.

Therefore, the final code is $1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1$.
(2) The message 1001001 in the 7-bit hamming code is transmitted through a noisy channel. Decode the message assuming that at most a single error occurred in each code word.

Ans. Message is 1001001

| Bits, 1, 3, 5, 7 (1001) | No error | $C_1 = 0$
| Bits, 2, 3, 6, 7 (0001) | Error | $C_2 = 1$
| Bits, 4, 5, 6, 7 (1001) | No error | $C_3 = 0$

The error word is $C_3C_2C_1 = 010 = 2_{10}$. So, complement the 2nd bit from left. Therefore, the correct code is 1101001.

Digital IC Specifications

1. **Threshold voltage**:-
 - It is defined as that voltage at the input of a gate which causes a change in the state of the output from one logic level to the other.

2. **Propagation delay**:-
 - A pulse through a gate takes a certain amount of time to propagate from input to output. This interval of time is known as the *propagation delay* of gate.
 - It is the average transition delay time t_{pd}, expressed by

 $$ t_{pd} = \frac{t_{PHL} + t_{PLH}}{2} $$

 where, t_{PHL} is the signal delay time when the output goes from a logic 0 to a logic 1 state and t_{PLH} is the signal delay time when the output goes from a logic 1 to logic 0 state.

3. **Power dissipation**:-
 - The *power dissipation*, P_D, of a logic gate is the power required by the gate to operate with 50% duty cycle at a specified frequency and is expressed in milliwatts.

 $$ P_D = V_{CC} \times I_{CC(avg)}/n, \text{ where } I_{CC(avg)} = \frac{I_{CC(min)} + I_{CC(max)}}{2} $$

4. **Fan-in**:-
 - The *fan-in* of a logic gate is defined as the number of inputs that the gate is designed to handle.

5. **Fan-out**:-
 - The *fan-out* (also called the *loading factor*) of a logic gate is defined as the maximum number of standard loads that the output of the gate can drive without impairing its normal operation.

6. **Voltage parameter**:-
 - $V_{IL(min)}$: It is the minimum voltage level required at the input of a gate for that input to be treated as a logic 1. Any voltage below this level will not be accepted as a logic 1 input by the logic circuit.

 - $V_{OH(min)}$: It is the minimum voltage level required at the output of a gate for that output to be treated as logic 1. Any voltage below this level will not be accepted as a logic 1 output.

 - $V_{IL(max)}$: It is the maximum voltage level that can be treated as logic 0 at the input of the gate. Any voltage above this level will not be treated as a logic 0 input by the logic circuit.
7. **Current parameter:-**
 - I_{th}: The current that flows into an input when a specified HIGH level voltage is applied to that input.
 - I_{l}: The current that flows into an input when a specified LOW level voltage is applied to that input.
 - I_{on}: The current that flows from an output in a logic 1 state under specified load conditions.
 - I_{off}: The current that flows from an output in a logic 0 state under specified load conditions.

8. **Noise margin:-**
 - When the digital circuits operate in noisy environment the gates may malfunction if the noise is beyond certain limits.
 - The noise immunity of a logic circuit refers to the circuit’s ability to tolerate noise voltages at its inputs.
 - A quantitative measure of noise immunity is called *noise margin*.

9. **Operating temperature:-**
 - The IC gates and other circuits are temperature sensitive being semiconductor devices.
 - However, they are designed to operate satisfactorily over a specified range of temperature.
 - The range specified for commercial applications is 0 to 70°C, for industrial it is 0 to 85°C, and for military applications it is -55°C to 125°C.

10. **Speed power product:-**
 - A common means for measuring and comparing the overall performance of an IC family is the *speed power product*, which is obtained by multiplying the gate propagation delay by the gate power dissipation.
 - A low value of speed power product is desirable. The smaller the product, the better the overall performance.
 - It is figure of merit of an IC family.

TTL v/s CMOS v/s ECL

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>TTL</th>
<th>CMOS</th>
<th>ECL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Input</td>
<td>Moderate</td>
<td>Low</td>
<td>Moderate-High</td>
</tr>
<tr>
<td>Frequency limit</td>
<td>High</td>
<td>Moderate</td>
<td>Very High</td>
</tr>
<tr>
<td>Circuit density</td>
<td>Moderate-high</td>
<td>High-very high</td>
<td>Moderate</td>
</tr>
<tr>
<td>Circuit types per family</td>
<td>High</td>
<td>High</td>
<td>Moderate</td>
</tr>
<tr>
<td>Logic Family</td>
<td>Propagation delay time (ns)</td>
<td>Power dissipation per gate (mW)</td>
<td>Noise Margin (V)</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------</td>
<td>---------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>TTL</td>
<td>9</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>CMOS</td>
<td><50</td>
<td>0.01</td>
<td>5</td>
</tr>
<tr>
<td>ECL</td>
<td>1</td>
<td>50</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Transistor-Transistor Logic (TTL)

- The TTL or T2L family is so named because of its dependence on transistors alone to perform basic logic operations.
- It is the most popular logic family. It is also the most widely used bipolar digital IC family.
- The TTL uses transistors operating in saturated mode. It is the fastest of the saturated logic families.
- The basic TTL logic circuit is the NAND gate. Good Speed, low manufacturing cost, wide range of circuits, and the availability in SSI and MSI are its merits.
- Tight V_{CC} tolerance, relatively high-power consumption, moderate packing density, generation of noise spikes and susceptibility to power transients are its demerits.
- The TTL logic family consists of several subfamilies or series such as:
 - Standard TTL, High Speed TTL, Low power TTL, Schottky TTL, Low power Schottky TTL, Advanced Schottky TTL, Advanced low power Schottky TTL and F(fast)TTL.
- The differences between the various TTL subfamilies are in their electrical characteristics such as delay time, power dissipation, switching speed, fan-out, fan-in, noise margin, etc. For Standard TTL, propagation delay time $= 9$ ns, power dissipation per gate $= 10$ mW, noise margin $= 0.4$ mV, fan-in $= 8$, and fan-out $= 10$.
- For standard TTL, 0 V to 0.8 V is treated as a logic 0 and 2 V to 5 V is treated as logic 1.
- Signals in 0.8 V to 2 V range should not be applied as input as the corresponding response will be independent.
- If a terminal is left open in TTL, it is equivalent to connecting it to HIGH, i.e. $+5$ V.
- But such a practice is not recommended, since the floating TTL is extremely susceptible to picking up noise signals that can adversely affect the operation of the device.

Schottky TTL

- The standard TTL, low power TTL, and high speed TTL series operate using saturated switching
- When a transistor is saturated, excess charge carriers will be stored in the base region and they must be removed before the transistor can be turned off.
- So, owing to storage time delay, the speed is reduced.
- The Schottky TTL 748 series reduces this storage time delay by not allowing the transistor to go into full saturation.
- This is accomplished by using a Schottky barrier diode (SBD) between the base and the collector of each transistor.
- Virtually, all modern TTL devices incorporate this so-called Schottky clamp.
- The SBD has a forward voltage of only 0.25 V. The circuits in the 74S series also use smaller resistance values to improve the speed of operation.
- The speed of the 74S series is twice that of the 74H series.
- Schottky TTL has more than three times the switching speed of standard TTL, at the expense of approximately doubling the power consumption.

Tri-State TTL

- The third TTL configuration is the tri-state configuration.
- It utilizes the advantage of high speed of operation of the totem-pole configuration and wire ANDing of the open-collector configuration.
- It is called the tri-state TTL, because it allows three possible output states: HIGH, LOW, and HIGH impedance (Hi-Z).
- In the Hi-Z state, both the transistors in the totem-pole arrangement are turned off, so that the output terminal is a HIGH impedance to ground or VCC.
- In fact, the output is an open or floating terminal, that is, neither a LOW nor a HIGH.
- In practice, the output terminal is not an exact open circuit, but has a resistance of several MΩ or more relative to ground and VCC.
Standard representation for logic functions

1. **Sum-of-products (SOP) form:**
 - This form is also called the Disjunctive Normal Form (DNF).
 - For example, \(f(A, B, C) = \overline{A}B + \overline{B}C \)

2. **Product-of-sums (POS) form:**
 - This form is also called the Conjunctive Normal Form (CNF).
 - The function of above equation may also be written in the form shown in equation below.
 - By using multiplying it out and using the consensus theorem, we can see that it is the same as
 \[f(A, B, C) = (\overline{A} + \overline{B})(B + C) \]

3. **Standard sum-of-products form:**
 - This form is also called Disjunctive Canonical Form (DCF).
 - It is also called the Expanded Sum of Products Form or Canonical Sum-of-Products Form.
 - In this form, the function is the sum of a number of product terms where each product term contains all the variables of the function either in complemented or uncomplemented form.
 - This can be derived from the truth table by finding the sum of all the terms that correspond to those combinations (rows) for which \(f \) assumes the value 1.
 - It can also be obtained from the SOP form algebraically as shown below.
 \[f(A, B, C) = \overline{A}B + \overline{B}C = \overline{A}B(\overline{C} + \overline{C}) + (A + \overline{A})\overline{B} \]
 \[= \overline{ABC} + \overline{AB}\overline{C} + AB\overline{C} + \overline{ABC} \]

 - A product term which contains all the variables of the function either in complemented or uncomplemented form is called a minterm.
 - A minterm assumes the value 1 only for one combination of the variables. An n variable function can have in all \(2^n \) minterms.
 - The sum of the minterms whose value is equal to 1 is the standard sum of products form of the function.
 - The minterms are often denoted as \(m_0, m_1, m_2, ... \), where the suffixes are the decimal codes of the combinations.
 - For a 3-variable function \(m_0 = \overline{ABC}, m_1 = \overline{AB}C, m_2 = \overline{A}BC, m_3 = \overline{A}B\overline{C}, m_4 = A\overline{B}C, m_5 = A\overline{B}\overline{C}, m_6 = AB\overline{C}, m_7 = ABC \).
 - Another way of representing the function in canonical SOP form is by showing the sum of minterms for which the function equals 1.
 - Thus \(f(A, B, C) = m_1 + m_2 + m_4 + m_5 \)
 - Yet another way of representing the function in DCF is by listing the decimal codes of the minterms for which \(f = 1 \).
 - Thus \(f(A, B, C) = \sum m(1, 2, 3, 5) \)

4. **Standard product-of-sums form:**
 - This form is also called Conjunctive Canonical Form (CCF).
 - It is also called Expanded Product-of-Sums Form or Canonical Product-of-Sums Form.
 - This is derived by considering the combinations for which \(f = 0 \). Each term is a sum of all the variables.
 - A variable appears in uncomplemented form if it has a value of 0 in the combination and appears in complemented form if it has a value of 1 in the combination.
 \[f(A, B, C) = (\overline{A} + \overline{B})(B + C) = (A + \overline{B} + C\overline{C})(\overline{A\overline{A}} + B + C) \]
= (\bar{A} + \bar{B} + C)(\bar{A} + \bar{B} + \bar{C})(\bar{A} + \bar{B} + C)(\bar{A} + B + C)

- A sum term which contains each of the \(n \) variables in either complemented or uncomplemented form is called a maxterm.
- A maxterm assumes the value 0 only for one combination of the variables. For all other combinations it will be 1.
- There will be at the most \(2^n \) maxterms. The product of maxterms corresponding to the rows for which \(f = 0 \), is the standard or canonical product of sums form of the function.
- Maxterms are often represented as \(M_0, M_1, M_2, \ldots \), where the suffixes denote their decimal code.
- Thus, the CCF of function \(f \) may be written as \(f(A, B, C) = M_0 \cdot M_1 \cdot M_2 \cdot M_3 \).
- Expression can also be expressed as \(f(A, B, C) = \Pi M_i(0, 4, 6, 7) \).
- Where \(\Pi \) represents the product of all maxterms whose decimal code is given within the parenthesis.

Karnaugh Map (K-Map)

- The Karnaugh map (K-map) method is a systematic method of simplifying the Boolean expression.
- The K-map is a chart or a graph, composed of an arrangement of adjacent cells, each representing a particular combination of variables in sum or product form.
- The output values placed in each cell are derived from the minterms of a Boolean function.
- A minterm is a product term that contains all of the function’s variables exactly once, either complemented or not complemented.

Two-variable K-Map

- The two variable expression can have \(2^2 = 4 \) possible combinations of the input variables \(A \) and \(B \).
- Each of these combinations, \(A'B', A'B, AB', \) and \(AB \) (in SOP form) is called minterm.
- These possible combinations can be represented in table and by the map as follows:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Minterm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(m_0 = A'B')</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>(m_1 = A'B)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>(m_2 = AB')</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(m_3 = AB)</td>
</tr>
</tbody>
</table>

![Two-variable K-Map Diagram](image)

Three-variable K-Map

- A function in three variable \((A, B, C)\) expressed in the standard SOP form can have eight possible combinations: \(A'B'C', A'B'C, A'BC', A'BC, AB'C', AB'C, ABC' \) and \(ABC \).
- Each one of these combinations designated by \(m_0, m_1, m_2, m_3, m_4, m_5, m_6, \) and \(m_7 \), respectively, is called minterm.
- In the standard POS form, the eight possible combinations are: \(A+B+C, A+B+C', A+B'+C, A+B'+C', A'+B+C, A'+B+C, A'+B'+C, \) and \(A'+B'+C' \).
- Each one of these combinations designated by \(M_0, M_1, M_2, M_3, M_4, M_5, M_6, \) and \(M_7 \), respectively, is called maxterm.
2 – Combinational digital circuits

Four-variable K-Map

- The four variables A, B, C and D have sixteen possible combinations that can be represented by the map as follows:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Minterm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(m_0 = A'B'C'D')</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(m_1 = A'B'C'D)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(m_2 = A'B'CD')</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>(m_3 = A'B'CD)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>(m_4 = A'BC'D')</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(m_5 = A'BC'D)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(m_6 = A'BCD')</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(m_7 = A'BCD)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(m_8 = AB'C'D')</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(m_9 = AB'C'D)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(m_{10} = AB'CD')</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>(m_{11} = AB'CD)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>(m_{12} = ABC'D')</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(m_{13} = ABC'D)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(m_{14} = ABCD')</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(m_{15} = ABCD)</td>
</tr>
</tbody>
</table>
Reduction using K-Map

- Squares which are physically adjacent to each other or which can be made adjacent by wrapping the map around from left to right or top to bottom can be combined to form bigger squares.
- The bigger squares (2 squares, 4 squares, 8 squares, etc.) must form either a geometric square or rectangle.
- For the minterms or maxterms to be combinable into bigger squares, it is necessary but not sufficient that their binary designations differ by a power of 2.

Example - 1 Reduce \(f(A, B, C) = A'B'C' + A'BC + AB'C + ABC \)

![K-Map Diagram for Example 1]

Answer: \(f = C \)

Example - 2 Reduce \(f(A, B, C, D) = ABC'D + A'BCD + A'BC'D + A'BCD \)

![K-Map Diagram for Example 2]

Answer: \(f = BD \)

Example - 3 Reduce \(f(A, B, C, D) = \sum_m(0, 2, 8, 10, 13) \)

![K-Map Diagram for Example 3]
2 – Combinational digital circuits

Answer: \(f = B'D' + ABC'D \)

Example – 4 Reduce \(f(A, B, C, D) = \prod M(0, 1, 4, 5, 10, 11, 14, 15) \)

- In POS form, we have to put “0” in the given number boxes in K-Map.
- Make group of Os same as we make group of 1s in SOP form.
- For common “1” write complemented form and for common “0” write uncomplemented form of variable, e.g. 1 - A’ and 0 - A.

Answer: \(f = (A+C) (A'+C') \)

K-Map with don't care condition

- Suppose we are given a problem of implementing a circuit to generate a logical 1 when a 2, 7, or 15 appears on a four-variable input.
- A logical 0 should be generated when 0, 1, 4, 5, 6, 9, 10, 13 or 14 appears.
- The input conditions for the numbers 3, 8, 11 and 12 never occur in the system. This means we don’t care whether inputs generate logical 1 or logical 0.
- Don’t care combinations are denoted by ‘x’ in K-Map which can be used for the making groups.
- The above example can be represented as

Example - 1 Reduce \(f(A, B, C, D) = \sum m(2, 7, 15) + d(3, 8, 11, 12) \)

Answer: \(f = CD + A'B'C \)
Example - 2 Reduce \(f(W, X, Y, Z) = \sum_m(1, 3, 7, 11, 15) + d(0, 2, 5) \)

\[
\begin{array}{cccc}
00 & 01 & 11 & 10 \\
0 & 4 & 12 & 8 \\
1 & 5 & 13 & 9 \\
2 & 6 & 14 & 10 \\
\end{array}
\]

Answer: \(f = W'X' + YZ \)

Variable-Entered Map (VEM)

- Variable-entered map can be used to plot an \(n \)-variable problem on \(n - 1 \) variable map.
- Possible to reduce the map dimension by two or three in some cases.
- Advantage of using VEM occurs in design problems involving multiplexers.
- For example, Map-entered variable for 3 variable function.
- Consider the function \(X = A'B'C' + AB'C' + AB'C + ABC \)
- Considering value of \(X \) to be function of map location and the variable \(C \) and plotting 2 variable K-Map.

\[
\begin{array}{c|c|c}
A & 0 & 1 \\
\hline
B & C' & C' \\
 0 & 0 & C + C' \\
 1 & 0 & C + C' \\
\end{array}
\]

Example - 1 Reduce \(f = AB'CD + A'BC'D + AB'CD' + ABC'D + A'B'C'D \)

\[
= AB'CD + A'BC'D + AB'CD' + ABC'D + A'B'C'D
\]

\[
\begin{array}{cccc}
00 & 01 & 11 & 10 \\
0 & D & D & D \\
1 & 0 & D + D' \\
\end{array}
\]

Answer: \(f = A'C'D + BC'D + AB'C \)
Example - 2 Reduce \(f = A'B'C'D + A'BC'D' + A'BC'D + AB'C'D' + AB'CD + AB'CD' + ABCD' \) using VEM method.

\[
\begin{array}{c|cccccccc}
0 & 2 & 2 & 4 & 5 & 5 & 7 \\
\hline
AB & 00 & 01 & 11 & 10 \\
C & D & D' & D' & \\
\end{array}
\]

Answer: \(f = A'C'D + A'BC' + ACD' + AB'D' + AB'C \)

Example - 3 Reduce \(f = A'B'C'D'E + A'B'C'D'E + A'BCD'E + A'BCD'E + AB'C'D'E + AB'C'D + A'BCDE' \)

\[
\begin{array}{c|cccccccc}
0 & 1 & 1 & 8 & 8 & 9 & 7 \\
\hline
AB & 00 & 01 & 11 & 10 \\
CD & E & E' & E & E' \\
\end{array}
\]

Answer: \(f = B'C'E + AB'C' + A'BCD' + A'BCE' \)

Quine McCluskey Method (Tabulation Method)

Procedure for minimization using tabulation method

1. List all the minterms.

2. Arrange all minterms in groups of the same number of 1s in their binary representation in column 1. Start with the least number of 1s group and continue with groups of increasing number of 1s.

3. Compare each term of the lowest index group with every term in the succeeding group. Whenever possible, combine the two terms being compared by means of the combining theorem. Two terms from adjacent groups are combinable, if their binary representations differ by just a single digit in the same position; the combined terms consist of the original fixed representation with the differing one replaced by a dash (-). Place a check mark (\(V \)) next to every term, which has been combined with at least one term and write the combined terms in column 2. Repeat this by comparing each term in a group of index \(i \) with every term in the group of index \(i + 1 \), until all possible applications of the combining theorem have been exhausted.
4. Compare the terms generated in step 3 in the same fashion; combine two terms which differ by only a single 1 and whose dashes are in the same position to generate a new term. Two terms with dashes in different positions cannot be combined. Write the new terms in column 3 and put a check mark next to each term which has been combined in column 2. Continue the process with terms in columns 3, 4 etc. until no further combinations are possible. The remaining unchecked terms constitute the set of prime implicants of the expression.

5. List all the prime implicants and draw the prime implicant chart. (The don’t cares if any should not appear in the prime implicant chart).

6. Obtain the essential prime implicants and write the minimal expression.

Example - 1 Simplify \(f(A, B, C, D) = \sum_m(1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 15) \) using tabulation method.

Step:-1 List all minterm

<table>
<thead>
<tr>
<th>Minterms</th>
<th>Binary Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0100</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>

Step:-3 Compare each term of the lowest index group with every term in the succeeding group till no change.

Step:-4 Compare the terms generated in step 3 in the same fashion until no further combinations are possible.

<table>
<thead>
<tr>
<th>Column-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Index 1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Index 2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Index 3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Index 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pairs</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1,3</td>
</tr>
<tr>
<td>1,5</td>
</tr>
<tr>
<td>1,9</td>
</tr>
<tr>
<td>2,3</td>
</tr>
<tr>
<td>2,6</td>
</tr>
<tr>
<td>8,9</td>
</tr>
<tr>
<td>8,12</td>
</tr>
<tr>
<td>3,7</td>
</tr>
<tr>
<td>5,7</td>
</tr>
<tr>
<td>5,13</td>
</tr>
<tr>
<td>6,7</td>
</tr>
<tr>
<td>9,13</td>
</tr>
<tr>
<td>12,13</td>
</tr>
<tr>
<td>7,15</td>
</tr>
<tr>
<td>13,15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quads</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1,3,5,7</td>
</tr>
<tr>
<td>1,5,9,13</td>
</tr>
<tr>
<td>2,3,6,7</td>
</tr>
<tr>
<td>8,9,12,13</td>
</tr>
<tr>
<td>5,7,13,15</td>
</tr>
</tbody>
</table>
2 - Combinational digital circuits

Step: 5 List all prime implicants and draw prime implicants chart.

Prime Implicants: \(P(BD), Q(AC'), R(A'C), S(C'D), T(A'D) \)

<table>
<thead>
<tr>
<th>Minterms</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>12</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(A'D))</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S(C'D))</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R(A'C))</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Q(AC'))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P(BD))</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Step: 6 Obtain essential prime implicants and minimal expression.

Essential Prime Implicants: \(P(BD), Q(AC'), R(A'C) \)

Minimal Expression: \(P + Q + R + S = BD + A'C + AC' + C'D \)
\(P + Q + R + T = BD + A'C + AC' + A'D \)

As minterm 1 is covered by \(S \) and \(T \).

Example - 2 Simplify \(f(A, B, C, D) = \sum_m (0, 1, 3, 7, 8, 9, 11, 15) \) using tabulation method.

Step: 1 List all minterm

<table>
<thead>
<tr>
<th>Minterms</th>
<th>Binary Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0001</td>
</tr>
<tr>
<td>1</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>0111</td>
</tr>
<tr>
<td>7</td>
<td>1011</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>

Step: 2 Arrange all minterms in groups of same number of 1s

<table>
<thead>
<tr>
<th>Column-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Index 0</td>
</tr>
<tr>
<td>Index 1</td>
</tr>
<tr>
<td>Index 2</td>
</tr>
<tr>
<td>Index 3</td>
</tr>
<tr>
<td>Index 4</td>
</tr>
</tbody>
</table>

Step: 3 Compare each term of the lowest index group with every term in the succeeding group till no change.

<table>
<thead>
<tr>
<th>Column-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pairs</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>0,1</td>
</tr>
<tr>
<td>0,8</td>
</tr>
<tr>
<td>1,3</td>
</tr>
<tr>
<td>1,9</td>
</tr>
<tr>
<td>8,9</td>
</tr>
<tr>
<td>3,7</td>
</tr>
<tr>
<td>3,11</td>
</tr>
<tr>
<td>9,11</td>
</tr>
<tr>
<td>7,15</td>
</tr>
<tr>
<td>11,15</td>
</tr>
</tbody>
</table>

Step: 4 Compare the terms generated in step 3 in the same fashion until no further combinations are possible.

<table>
<thead>
<tr>
<th>Column-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quads</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>0,1,8,9</td>
</tr>
<tr>
<td>1,3,9,11</td>
</tr>
<tr>
<td>3,7,11,15</td>
</tr>
</tbody>
</table>
Step: 5 List all prime implicants and draw prime implicants chart.
Prime Implicants: P(CD), Q(B’D), R(B’C’)

<table>
<thead>
<tr>
<th>Minterms</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>11</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(CD)✓</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q(B’D)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R(B’C’)✓</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step: 6 Obtain essential prime implicants and minimal expression.
Essential Prime Implicants: P(CD), R(B’C’)

Minimal Expression: \(P + R = CD + B’C’\)

Realization using universal gates

1. Draw the circuit in AOI logic.
2. If NAND hardware is chosen, add a circle at the output of each AND gate and at the inputs to all the OR gates.
3. If NOR hardware is chosen, add a circle at the output of each OR gate and at the inputs to all the AND gates.
4. Add or subtract an inverter on each line that received a circle in steps 2 or 3 so that the polarity of signals on those lines remains unchanged from that of the original diagram.
5. Replace bubbled OR by NAND and bubbled AND by NOR.
6. Eliminate double inversions.

Example - 1 Implement the following AOI logic using NAND.

- Put a circle at the output of each AND gate and at the inputs to all OR gates

- Add an inverter to each of the lines that received only one circle at input so that polarity remains unchanged.
Replace bubbled OR gates and NOT gates by NAND gates.

Multiplexer

- A multiplexer (MUX) is a device that allows digital information from several sources to be routed onto a single line for transmission over that line to a common destination.
- Consider an integer ‘m’, which is constrained by the following relation:
 \[m = 2^n \]
 where \(m \) and \(n \) are both integers.
- A m-to-1 Multiplexer has
 - \(m \) Inputs: \(I_0, I_1, I_2, \ldots, I_{(m-1)} \)
 - One Output: \(Y \)
 - \(n \) Control inputs: \(S_0, S_1, S_2, \ldots, S_{(n-1)} \)
 - One (or more) Enable input(s)
 such that \(Y \) may be equal to one of the inputs, depending upon the control inputs.
- The block diagram of 4 x 1 multiplexer is as follows.
The function table for the 4 x 1 multiplexer can be stated as below.

<table>
<thead>
<tr>
<th>Select Inputs</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>S_0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The following logic function describes the above function table.

$$Y = S_1'S_0'I_0 + S_1'S_0'I_1 + S_1S_0'I_2 + S_1S_0'I_3$$

The following figure describes the logic circuit for 4 x 1 multiplexer.

Applications of Multiplexer is as follows:
1. Logic function generation
2. Data selection
3. Data routing
4. Operation sequencing
5. Parallel-to-serial conversion
6. Waveform generation
Example - 1 Implement the following function using 8 to 1 mux: \(f(X, Y, Z) = \sum_m(0, 2, 3, 5) \)

<table>
<thead>
<tr>
<th>(S_2)</th>
<th>(S_1)</th>
<th>(S_0)</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Example - 2 Implement the following using 8 to 1 mux: \(f(A, B, C, D) = \sum_m(2, 3, 5, 7, 8, 9, 12, 13, 14, 15) \)

<table>
<thead>
<tr>
<th>(S_2)</th>
<th>(S_1)</th>
<th>(S_0)</th>
<th>(D)</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Half Adder

- A half-adder is a combinational circuit with two binary inputs (augend and addend bits) and two binary outputs (sum and carry bits).
- It adds the two inputs (single bit words A and B) and produces the sum (S) and the carry (C) bits.
- The truth table of a half-adder are shown below:

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- The Sum (S) is the X-OR of A and B (It represent the LSB of the sum). Therefore,
 \[S = AB' + BA' = A \oplus B \]
- The carry (C) is the AND of A and B (It is 0 unless both the inputs are 1). Therefore,
 \[C = AB \]
- A half-adder can, therefore, be realized by using one X-OR gate and one AND gate as shown in figure below.

![Half Adder Diagram](image)

Full Adder

- A full-adder is a combinational circuit that adds two bits and a carry and outputs a sum bit and a carry bit.
- When we want to add two binary numbers, each having two or more bits, the LSBs can be added by using a half-adder.
- The carry resulted from the addition of the LSBs is carried over to the next significant column and added to the two bits in that column.
- The full-adder adds the bits A and B and the carry from the previous column called the carry-in \(C_{in} \) and outputs the sum bit \(S \) and the carry bit called the carry-out \(C_{out} \).
- The variable \(S \) gives the value of the least significant bit of the sum.
- The variable \(C_{out} \) gives the output carry.
- The truth table of a full-adder are shown in figure below.
Combinational digital circuits

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- The eight rows under the input variables designate all possible combinations of 1s and 0s that these variables may have.
- When all the bits are 0s, the output is 0.
- The S output is equal to 1 when only 1 input is equal to 1 or when all the inputs are equal to 1.
- The C\(_\text{out}\) has a carry of 1 if two or three inputs are equal to 1.
- From the truth table, a circuit that will produce the correct sum and carry bits in response to every possible combination of A, B, and C\(_\text{in}\) is described by

 \[
 S = A'B'C\text{in} + A'BC\text{in}' + AB'C\text{in}' + ABC\text{in} \\
 = (AB' + A'B)C\text{in}' + (AB + A'B)C\text{in} \\
 = (A \oplus B)C\text{in} + (A \oplus B)'C\text{in} \\
 = A \oplus B \oplus C\text{in}
 \]

 \[
 C\text{out} = A'BC\text{in} + AB'C\text{in} + ABC\text{in}' + ABC\text{in} \\
 = AB + (A \oplus B)C\text{in}
 \]

- The sum term of the full-adder is the X-OR of A, B and C\(_\text{in}\), i.e., the sum bit is the modulo sum of the data bits in that column and the carry from the previous column.
- The logic diagram of the full-adder using two X-OR gates and two AND gates (i.e., two half-adders) and one OR gate is shown in figure below.
Half Subtractor

- A half-subtractor is a combinational circuit that subtracts one bit from the other and produces the difference.
- It also has an output to specify if a 1 has been borrowed.
- It is used to subtract the LSB of the subtrahend from the LSB of the minuend when one binary number is subtracted from the other.
- A half-subtractor is a combinational circuit with two inputs A and B and two outputs d and b.
- \(d \) indicates the difference and \(b \) is the output signal generated that informs the next stage that a 1 has been borrowed.
- We know that, when a bit \(B \) is subtracted from another bit \(A \), a difference bit (d) and a borrow bit (b) result according to the rules given as follows.

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- A circuit that produces the correct difference and borrow bits in response to every possible combination of the two 1-bit numbers is, therefore, described by
 \[
 d = AB' + BA' = A \oplus B \quad \text{and} \quad d = A'B
 \]
- That is, the difference bit is obtained by X-ORing the two inputs, and the borrow bit is obtained by ANDing the complement of the minuend with the subtrahend.
- Figure below shows logic diagrams of a half-subtractor.

```
A
\[ d = A \oplus B \]
B
\[ b = A'B \]
```

Full Subtractor

- The half-subtractor can be used only for LSB subtraction.
- If there is a borrow during the subtraction of the LSBs, it affects the subtraction in the next higher column; the subtrahend bit is subtracted from the minuend bit, considering the borrow from that column used for the subtraction in the preceding column.
- Such a subtraction is performed by a full-subtractor.
- It subtracts one bit (B) from another bit (A), when already there is a borrow \(b \), from this column for the subtraction in the preceding column, and outputs the difference bit (d) and the borrow bit (b) required from the next column.
2 – Combinational digital circuits

- A full-subtractor is a combinational circuit with three inputs \((A, B, b_i)\) and two outputs \(d\) and \(b\).
- The 1s and 0s for the output variables are determined from the subtraction of \(A - B - b_i\).
- The truth table of a full-subtractor are shown in figure.

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- From the truth table, a circuit that will produce the correct difference and borrow bits in response to every possible combination of \(A, B,\) and \(b_i\) is described by

\[
\begin{align*}
d &= A'B'bi + A'Bb'i + AB'b'i + ABB_i \\
 &= (AB' + A'B)b'i + (AB + A'B')b_i \\
 &= (A \oplus B)b'i + (A \oplus B)'b_i \\
 &= A \oplus B \oplus b_i \\

b &= A'B'bi + A'Bb'i + A'Bb_i + ABB_i \\
 &= A'B(b_i + b'_i) + (AB + A'B')b_i \\
 &= A'B + (A \oplus B)'b_i
\end{align*}
\]

- A full-subtractor can, therefore, be realized using X-OR gates as shown below.

![Binary parallel adder](image)

Binary parallel adder

- A binary parallel adder is a digital circuit that adds two binary numbers in parallel form and produces the arithmetic sum of those numbers in parallel form.
- It consists of full adders connected in a chain with the output carry from each full-adder connected to the input carry of the next full-adder in the chain.
Figure shows the interconnection of four full-adder (FA) circuits to provide a 4-bit parallel adder.
- The augend bits of A and addend bits of B are designated by subscript numbers from right to left, with subscript 1 denoting the lower-order bit.
- The carries are connected in 3 chain through the full-adders.
- The input carry to the adder is C_n and the output carry is C_0.
- The S outputs generate the required sum bits.
- When the 4-bit full-adder circuit is enclosed within an IC package, it has four terminals for the augend bits, four terminals for the addend bits, four terminals for the sum bits, and two terminals for the input and output carries.
- An n-bit parallel adder requires n-full adders.
- It can be constructed from 4-bit, 2-bit, and 1-bit full adder ICs by cascading several packages.
- The output carry from one package must be connected to the input carry of the one with the next higher-order bits.
- The 4-bit full adder is a typical example of an MSI function.

Binary parallel subtractor

- The subtraction of binary numbers can be carried out most conveniently by means of complement.
- Remember that the subtraction $A - B$ can be done by taking the 2's complement of B and adding it to A.
- The 2's complement can be obtained by taking the 1's complement and adding 1 to the least significant pair of bits.
- The 1's complement can be implemented with inverters as shown in below figure.
Binary adder subtractor

- Figure shows a 4-bit adder-subtractor circuit.
- Here the addition and subtraction operations are combined into one circuit with one common binary adder.
- This is done by including an X-OR gate with each full-adder.
- The mode input M controls the operation.
- When M = 0, the circuit is an adder, and when M = 1, the circuit becomes a subtractor.
- Each X-OR gate receives input M and one of the inputs of B.
- When M = 0, we have \(B \oplus 0 = B \). The full-adder receives the value of B, the input carry is 0 and the circuit performs \(A + B \).
- When M = 1, we have \(B \oplus 1 = B' \) and \(C_1 = 1 \). The B inputs are complemented and a 1 is added through the input carry.
- The circuit performs the operation \(A + B' + 1 \) (i.e. \(A - B \)).

![Binary Adder Subtractor Diagram](image)

Look ahead carry adder

- In the case of the parallel adder, the speed with which an addition can be performed is governed by the time required for the carries to propagate or ripple through all of the stages of the adder.
- The look-ahead-carry adder speeds up the process by eliminating this ripple carry delay.
- It examines all the input bits simultaneously and also generates the carry-in bits for all the stages simultaneously.
- The method of speeding up the addition process is based on the two additional functions of the full-adder, called the carry generate and carry propagate functions.
- Consider one full adder stage; say the nth stage of a parallel adder shown in Figure.
- We know that it is made of two half-adders and that the half-adder contains an X-OR gate to produce the sum and an AND gate to produce the carry.
- If both the bits \(A_n \) and \(B_n \) are 1s, a carry has to be generated in this stage regardless of whether the input carry \(C_{in} \) is a 0 or a 1.
- This is called generated carry, expressed as \(G_n = A_n \cdot B_n \) which has to appear at the output through the OR gate as shown in Figure.
There is another possibility of producing a carry out. X-OR gate inside the half-adder at the input produces an intermediary sum bit - call it \(P_n \) - which is expressed as \(P_n = A_n \oplus B_n \).

Next \(P_n \) and \(C_n \) are added using the X-OR gate inside the second half adder to produce the final sum bit \(S_n = P_n \oplus C_n = A_n \oplus B_n \oplus C_n \) and output carry \(C_{n+1} = P_n \cdot C_n = (A_n \oplus B_n) \cdot C_n \) which becomes input carry for the \((n+1)\)th stage.

Consider the case of both \(P_n \) and \(C_n \) being 1. The input carry \(C_n \) has to be propagated to the output only if \(P_n \) is 1.

If \(P_n \) is 0, even if \(C_n \) is 1, the AND gate in the second half-adder will inhibit \(C_n \).

We may thus call \(P_n \) as the propagated carry as this is associated with enabling propagation of \(C_n \) to the carry output of the \(n \)th stage which is denoted as \(C_{n+1} \) or \(C_0 \).

So, we can say that the carryout of the \(n \)th stage is 1 when either \(G_n = 1 \) or \(P_n \cdot C_n = 1 \) or both \(G_n \) and \(P_n \cdot C_n \) are equal to 1.

For the final sum and carry outputs of the \(n \)th stage, we get the following Boolean expressions.

\[
S_n = P_n \oplus C_n \quad \text{where} \quad P_n = A_n \oplus B_n
\]

\[
C_{n+1} = C_{n+2} = G_n + P_n C_n \quad \text{where} \quad G_n = A_n \cdot B_n
\]

Observe the recursive nature of the expression for the output carry at the \(n \)th stage which becomes the input carry for the \((n+1)\)th stage.

By successive substitution, it is possible to express the output carry of a higher significant stage in terms of the applied input variables \(A, B \) and the carry-in to the LSB adder.

The carry-in to each stage is the carry-out of the previous stage.

Based on these, the expressions for the carry-outs of various full adders are as follows:

\[
C_2 = G_1 + P_1 C_1
\]

\[
C_3 = G_2 + P_2 C_2
\]

\[
= G_2 + P_2 (G_1 + P_1 C_1)
\]

\[
= G_2 + P_2 G_1 + P_2 P_1 C_1
\]

\[
C_4 = G_3 + P_3 C_3 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 C_1
\]

\[
C_5 = G_4 + P_4 C_4 = G_4 + P_4 G_3 + P_4 P_3 G_2 + P_4 P_3 P_2 G_1 + P_4 P_3 P_2 P_1 C_1
\]

Observe that the final output carry is expressed as a function of the input variables in SOP form, which is a two-level AND-OR or equivalent NAND-NAND form.

To produce the output carry for any particular stage, it is clear that it requires only that much time required for the signals to pass through two levels only.

Hence the circuit for look-ahead-carry introduces a delay corresponding to two gate levels.

The block diagram of a 4-stage look-ahead-carry parallel adder is shown in below figure.

Observe that the full look-ahead-scheme requires the use of OR gate with \((n + 1)\) inputs and AND gates with number of inputs varying from 2 to \((n + 1)\).
Binary to gray converter

- The input to the 4-bit binary to gray code converter circuit is a 4-bit binary and the output is a 4-bit gray code.
- There are 16 possible combinations of 4-bit binary input and all of them are valid.
- The 4-bit binary and the corresponding gray code are shown in below table.

<table>
<thead>
<tr>
<th>4-bit Binary</th>
<th>4-bit Gray</th>
</tr>
</thead>
<tbody>
<tr>
<td>B₄ B₃ B₂ B₁</td>
<td>G₄ G₃ G₂ G₁</td>
</tr>
<tr>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>0 0 0 1</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>0 0 1 1</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>0 1 1 0</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>0 1 1 1</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>0 1 0 0</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>1 1 0 0</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>1 1 0 1</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>1 1 1 0</td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>1 0 1 0</td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>1 0 1 1</td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>1 0 0 1</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>1 0 0 0</td>
</tr>
</tbody>
</table>
- From the conversion table, we observe that the expressions for the outputs G_4, G_3, G_2, and G_1 are as follows:

$$G_4 = \sum_m(8, 9, 10, 11, 12, 13, 14, 15)$$
$$G_3 = \sum_m(4, 5, 6, 7, 8, 9, 10, 11)$$
$$G_2 = \sum_m(2, 3, 4, 5, 10, 11, 12, 13)$$
$$G_1 = \sum_m(1, 2, 5, 6, 9, 10, 13, 14)$$

- The K-maps for G_4, G_3, G_2, and G_1 and their minimization are shown below:

For G_4:

For G_3:

For G_2:

For G_1:

- The minimal expressions for the outputs obtained from the K-map are:

$$G_4 = B_4$$
$$G_3 = B_3' B_3 + B_4 B_3' = B_4 \oplus B_3$$
$$G_2 = B_2' B_2 + B_3 B_2' = B_3 \oplus B_2$$
$$G_1 = B_2' B_1 + B_2 B_1' = B_2 \oplus B_1$$
BCD to XS-3 code converter

- BCD means 8421 BCD.
- The 4-bit input BCD code (B4 B3 B2 B1) and the corresponding output XS-3 code (X4 X3 X2 X1) numbers are shown in the conversion table in figure.

<table>
<thead>
<tr>
<th>8421 code</th>
<th>XS-3 code</th>
</tr>
</thead>
<tbody>
<tr>
<td>B4 B3 B2 B1</td>
<td>X4 X3 X2 X1</td>
</tr>
<tr>
<td>0 0 0 0</td>
<td>0 0 1 1</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>0 1 0 0</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>0 1 1 0</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>0 1 1 1</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>1 0 0 1</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>1 0 1 0</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>1 0 1 1</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>1 1 0 0</td>
</tr>
</tbody>
</table>

- The input combinations 1010, 1011, 1100, 1101, 1110, and 1111 are invalid in BCD. So they are treated as don’t cares.
- From the above truth table, function can be realized as follows:
 \[
 X_4 = \Sigma m(5, 6, 7, 8, 9) + d(10, 11, 12, 13, 14, 15)
 \]
 \[
 X_3 = \Sigma m(1, 2, 3, 4, 9) + d(10, 11, 12, 13, 14, 15)
 \]
 \[
 X_2 = \Sigma m(0, 3, 4, 7, 8) + d(10, 11, 12, 13, 14, 15)
 \]
 \[
 X_1 = \Sigma m(0, 2, 4, 6, 8) + d(10, 11, 12, 13, 14, 15)
 \]
- Drawing K-maps for the outputs X4, X3, X2, and X1 in terms of the inputs B4, B3, B2, and B1 and simplifying them, as shown.
The minimal expressions are:

\[X_4 = B_4 + B_3B_2 + B_2B_1 \]
\[X_3 = B_3B_1'B_0' + B_3'B_2 + B_0'B_2 \]
\[X_2 = B_2'B_1' + B_2B_1 \]
\[X_1 = B_1' \]

1-bit magnitude Comparator

- Let the 1-bit numbers be \(A = A_0 \) and \(B = B_0 \)
- If \(A_0 = 1 \) and \(B_0 = 0 \) then \(A > B \)
\[A > B : G = A_0B_0' \]
- If \(A_0 = 0 \) and \(B_0 = 1 \) then \(A < B \)
\[A < B : L = A_0'B_0 \]
- If \(A_0 = 1 \) and \(B_0 = 1 \) (coincides) then \(A = B \)
\[A = B : E = A_0 \bigoplus B_0 \]

<table>
<thead>
<tr>
<th>(A_0)</th>
<th>(B_0)</th>
<th>(L)</th>
<th>(E)</th>
<th>(G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
2-bit magnitude Comparator

- The logic for a 2-bit magnitude comparator: Let the two 2-bit numbers be \(A = A_1A_0 \) and \(B = B_1B_0 \).
 1. If \(A_1 = 1 \) and \(B_1 = 0 \), then \(A > B \) or
 2. If \(A_1 \) and \(B_1 \) coincide and \(A_0 = 1 \) and \(B_0 = 0 \), then \(A > B \). So the logic expression for \(A > B \) is
 \[
 A > B : G = A_1B_0' + (A_1 \oplus B_1) A_0B_0'
 \]
 1. If \(A_1 = 0 \) and \(B_1 = 1 \), then \(A < B \) or
 2. If \(A_1 \) and \(B_1 \) coincide and \(A_0 = 0 \) and \(B_0 = 1 \), then \(A < B \). So the expression for \(A < B \) is
 \[
 A < B : L = A_1'B_0 + (A_1 \oplus B_1) A_0'B_0
 \]
 If \(A_1 \) and \(B_1 \) coincide and if \(A_0 \) and \(B_0 \) coincide then \(A = B \). So the expression for \(A = B \) is
 \[
 A = B : E = (A_1 \oplus B_1)(A_0 \oplus B_0)
 \]

- The logic diagram for a 2-bit comparator is as shown below:

![Logic Diagram for 2-bit Comparator](image)

Parity generator

- Exclusive-OR functions are very useful in systems requiring error detection and correction codes.
- Binary data, when transmitted and processed, is susceptible to noise that can alter its 1s to 0s and 0s to 1s.
- To detect such errors, an additional bit called the parity bit is added to the data bits and the word containing the data bits and the parity bit is transmitted.
- At the receiving end the number of 1s in the word received are counted and the error, if any, is detected.
- This parity check, however, detects only single bit errors.
- The circuit that generates the parity bit in the transmitter is called a parity generator.
- The circuit that checks the parity in the receiver is called a parity checker.
- A parity bit, a 0 or a 1 is attached to the data bits such that the total number of 1s in the word is even for even parity and odd for odd parity.
- The parity bit can be attached to the code group either at the beginning or at the end depending on system design.
- A given system operates with either even or odd parity but not both.
- So, a word always contains either an even or an odd number of 1s.
At the receiving end, if the word received has an even number of 1s in the odd parity system or an odd number of 1s in the even parity system, it implies that an error has occurred.

In order to check or generate the proper parity bit in a given code word, the basic principle used is, “the modulo sum of an even number of 1s is always 0 and the modulo sum of an odd number of 1s is always 1”.

Therefore, in order to check for an error, all the bits in the received word are added.

If the modulo sum is a 0 for an odd parity system or a 1 for an even parity system, an error is detected.

Example - 1 Design 3-bit parity generator using even parity bit.

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
<th>parity bit (f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[f = A'B'C + A'BC' + ABC + AB'C' \]
\[f = A'(B'C + BC') + A(BC + B'C') \]
\[f = A'(B \oplus C) + A(B \oplus C)' \]
\[f = A \oplus B \oplus C \]

Demultiplexer

- A multiplexer takes several inputs and transmits one of them to the output.
- A demultiplexer performs the reverse operation; it takes a single input and distributes it over several outputs.
- So, a demultiplexer can be thought of as a ‘distributor’, since it transmits the same data to different destinations.
- Thus, whereas a multiplexer is an N-to-1 device, demultiplexer is a 1-to-N device.
- Consider an integer ‘m’, which is constrained by the following relation:

\[m = 2^n \]
\[\text{where } m \text{ and } n \text{ are both integers.} \]

A 1-to-m Demultiplexer has

- One Input: D
- m Outputs: O_0, O_1, O_2, O_{m-1}
- n Control inputs: S_0, S_1, S_2, S_{n-1}
- One (or more) Enable input(s)

- Such that D may be transfer to one of the outputs, depending upon the control inputs.
2 – Combinational digital circuits

1x4 Demultiplexer
- The block diagram and truth table of 1 x 4 demultiplexer is as follows.

<table>
<thead>
<tr>
<th>Select code</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₁</td>
<td>S₀</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- The following figure describes the logic circuit for 1 x 4 demultiplexer.

Decoder
- A decoder is a logic circuit that converts an N-bit binary input code into M output lines such that only one output line is activated for each one of the possible combinations of inputs.
- In other words, we can say that a decoder identifies or recognizes or detects a particular code.

- Figure shows the general decoder diagram with N inputs and M outputs.
- Since each of the N inputs can be a 0 or a 1, there 2^N possible input combinations or codes.
For each of these input combinations, only one of the M outputs will be active, all the other outputs will remain inactive.

3 to 8 Decoder

- Figure shows the circuitry for a decoder with three inputs and eight outputs.
- It uses all AND gates, and therefore, the outputs are active-HIGH. For active-LOW outputs, NAND gates are used.
- The truth table of the decoder is shown below.

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- This decoder can be referred to in several ways.
- It can be called a 3-line to 8-line decoder because it has three lines and eight output lines.
- It is also called a binary-to-octal decoder because it takes a 3-bit binary input code and activates one of the eight (octal) outputs corresponding to that code.
- It is also referred to as a 1-of-8 decoder because only one of the eight outputs is activated at one time.
Priority encoder

- A priority encoder is a logic circuit that responds to just one input in accordance with some priority system, among all those that may be simultaneously HIGH.
- The most common priority system is based on the relative magnitudes of the inputs; whichever decimal input is the largest, is the one that is encoded.
- The truth table of 4-input priority encoder and expression are given below:

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_0</td>
<td>D_1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

\[A = \sum_m(1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15) \]
\[B = \sum_m(1, 3, 4, 5, 7, 9, 11, 12, 13, 15) \]
\[V = \sum_m(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) \]

- In addition to the outputs A and B, the circuit has a third output designated by V.
- This is a valid bit indicator that is set to 1 when one or more inputs are equal to 1.
- If all inputs are 0, there is no valid input and V is equal to 0, the two other outputs are not inspected when V equals 0 and are specified as don’t care conditions.
- According to the truth table, the higher the subscript number, the higher the priority of the input.
- The K-map for A, B and V with minimized expression are shown below:

\[A = D_3 + D_2 \]
\[B = D_3 + D_2 \cdot D_1 \]
\[V = D_3 + D_2 + D_1 + D_0 \]
Serial adder

- A serial adder is used to add binary numbers in serial form.
- The two binary numbers to be added serially are stored in two shift registers A and B.
- Bits are added one pair at a time through a single full adder (FA) circuit as shown in Figure.
- The carry out of the full-adder is transferred to a D flip flop.
- The output of this flip-flop is then used as the carry input for the next pair of significant bits.
- The sum bit from the S output of the full adder could be transferred to a third shift register.
- By shifting the sum into A while, the bits of A are shifted out, it is possible to use one register for storing both augend and the sum bits.
- The serial input register B can be used to transfer a new binary number while the addend bits are shifted out during the addition.
- The operation of the serial adder is as follows.
- Initially register A holds the augend, register B holds the addend and the carry flip-flop is cleared to 0. The outputs (SO) of A and B provide a pair of significant bits for the full-adder at x and y.
- The shift control enables both registers and carry flip flop, so, at the clock pulse both registers are shifted once to the right, the sum bit from S enters the left most flip-flop of A, and the output carry is transferred into flip-flop Q.
- The shift control enables the registers for a number of clock pulses equal to the number of bits of the registers.
- For each succeeding clock pulse a new sum bit is transferred to A, a new carry is transferred to Q, and both registers are shifted once to the right.
- This process continues until the shift control is disabled.
- Thus, the addition is accomplished by passing each pair of bits together with the previous carry through a single full adder circuit and transferring the sum, one bit at a time, into register A.

![Diagram of serial adder](image)

- Initially, register A and the carry flip-flop are cleared to 0 and then the first number is added from B. While B is shifted through the full adder, a second number is transferred to it through its serial input.
- The second number is then added to the content of register A while a third number is transferred serially into register B.
- This can be repeated to form the addition of two, three, or more numbers and accumulate their sum in register A.
Arithmetic logic unit (ALU)

- A very popular and widely used combinational circuit is ALU which is capable of performing arithmetic as well as logical operations.
- To perform a microoperation, the contents of specified registers are placed in the inputs of common ALU. The ALU performs an operation and the result of the operation is then transferred to a destination register.
- The ALU is a combinational circuit in which the entire register transfer operation from the source registers through the ALU and into destination register can be performed during one clock pulse.
- Figure shows the basic block diagram of ALU and different kind of operations performed by ALU depending on select lines.

![Diagram of ALU](image)

<table>
<thead>
<tr>
<th>Selection</th>
<th>Output</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₂ S₁ S₀ Cₘᵢₙ</td>
<td>F = A</td>
<td>Transfer A</td>
</tr>
<tr>
<td>0 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>F = A + 1</td>
<td>Increment A</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>F = A + B</td>
<td>Addition</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>F = A + B + 1</td>
<td>Add with carry</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>F = A – B – 1</td>
<td>Subtract with borrow</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>F = A – B</td>
<td>Subtraction</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>F = A – 1</td>
<td>Decrement A</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>F = A</td>
<td>Transfer A</td>
</tr>
<tr>
<td>1 0 0 X</td>
<td>F = A + B</td>
<td>OR</td>
</tr>
<tr>
<td>1 0 1 X</td>
<td>F = A ⊕ B</td>
<td>XOR</td>
</tr>
<tr>
<td>1 1 0 X</td>
<td>F = A . B</td>
<td>AND</td>
</tr>
<tr>
<td>1 1 1 X</td>
<td>F = A'</td>
<td>Complement A</td>
</tr>
</tbody>
</table>
Sequential Switching Circuits

- Sequential switching circuits are circuits whose output levels at any instant of time are dependent on the levels present at the inputs at that time and on the state of the circuit, i.e., on the prior input level conditions (i.e. on its past inputs)
- The past history is provided by feedback from the output back to the input.
- Made up of combinational circuits and memory elements, e.g. Counters, shift registers, serial adder, etc.

<table>
<thead>
<tr>
<th>Combinational circuits</th>
<th>Sequential circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. In combinational circuits, the output variables at any instant of time are dependent only on the present input variables.</td>
<td>1. In sequential circuits, the output variables at any instant of time are dependent not only on the present input variables, but also on the present state, i.e. on the past history of the system.</td>
</tr>
<tr>
<td>2. Memory unit is not required in combinational circuits.</td>
<td>2. Memory unit is required to store the past history of the input variables in sequential circuits.</td>
</tr>
<tr>
<td>3. Combinational circuits are faster because the delay between the input and the output is due to propagation delay of gates only.</td>
<td>3. Sequential circuits are slower than combinational circuits.</td>
</tr>
<tr>
<td>4. Combinational circuits are easy to design.</td>
<td>4. Sequential circuits are comparatively harder to design.</td>
</tr>
</tbody>
</table>

Flip-flop and Latch

- A flip-flop, known formally as bistable multivibrator, has two stable states.
- It can remain in either of the states indefinitely.
- Its state can be changed by applying the proper triggering signal.
- Latch is used for certain flip-flop which are non-clocked.
- These flip-flops ‘latch on’ to a 1 or a 0 immediately upon receiving the input pulse called SET or RESET.
- The latch is sequential device that checks all its inputs continuously and changes its outputs accordingly at any time independent of a clock signal.

S-R Latch

- The simplest type of flip-flop is called an S-R latch.
- It has two outputs labelled Q and Q' and two inputs labelled S and R. The state of the latch corresponds to the level of Q (HIGH or LOW, 1 or 0) and Q’ is the complement of that state.
- It can be constructed using either two cross-coupled NAND gates or two-cross coupled NOR gates.
Using two NOR gates, an active-HIGH S-R latch can be constructed and using two NAND gates an active-LOW S-R latch can be constructed.

The name of the latch, S-R or SET-RESET, is derived from the names of its inputs.

Below is the common logic symbol for both latches.

NOR gate S-R latch (Active HIGH)

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>Q_n</th>
<th>Q_{n+1}</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No Change (NC)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Reset</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Set</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>Indeterminate (Invalid)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

- When the SET input is made HIGH, Q becomes 1.
- When the RESET input is made HIGH, Q becomes 0.
- If both the inputs S and R made LOW, there is no change in the state of the latch.
- If both the inputs are made HIGH, the output is unpredictable i.e. invalid.
- Figure shows the logic diagram of an active HIGH S-R latch composed of two cross-coupled NOR gates.
- Note that the output of each gate is connected to one of the inputs of the other gate.

The latch works as per the truth table of figure, where Q_n represents the state of the flip-flop before applying inputs and Q_{n+1} represents the state of the flip-flop after applying inputs.

NAND gate S-R latch (Active LOW)

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>Q_n</th>
<th>Q_{n+1}</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>Indeterminate (Invalid)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Set</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Reset</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>No Change (NC)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- The NAND gate is equivalent to an active LOW OR gate, an active LOW S-R latch using OR gates may also be represented.
- The operation of this latch is the reverse of the operation of the NOR gate latch.
3 – Sequential circuits and systems

- If the 0s are replaced by 1s and 1s by 0s, we get the same truth table as that of NOR gate latch.
- The SET and RESET inputs are normally resting in the HIGH state and one of them will be pulsed LOW, whenever we want to change the latch outputs.

S-R Flip-flop (Gated S-R latch)

<table>
<thead>
<tr>
<th>En</th>
<th>S</th>
<th>R</th>
<th>Q_n</th>
<th>Q_{n+1}</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No Change (NC)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Reset</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Set</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>Indeterminate (Invalid)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>No Change (NC)</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- A gated S-R latch requires an ENABLE (EN) input.
- Its S and R inputs will control the state of the flip-flop only when the EN is HIGH.
- When EN is LOW, the inputs become ineffective and no change of state can take place.
- The EN input may be a clock. So, a gated S-R latch is also called a *clocked S-R latch*.
- Since this type of flip-flop responds to the changes in inputs only as long as the clock is HIGH, these types of flip-flops are also called *level triggered flip-flops*.

D Flip-flop (Gated D latch)

<table>
<thead>
<tr>
<th>En</th>
<th>D</th>
<th>Q_n</th>
<th>Q_{n+1}</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Reset</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Set</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>No Change (NC)</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
3 – Sequential circuits and systems

- It differs from the S-R latch in that it has only one input in addition to EN.
- When D=1, we have S=1 and R=0, causing the latch to SET when ENABLED.
- When D=0, we have S=0 and R=1, causing the latch to RESET when ENABLED.
- When EN is LOW, the latch is ineffective, and any change in the value of D input does not affect the output at all.
- When EN is HIGH, a LOW D input makes Q LOW, i.e. resets the flip-flop and a HIGH D input makes Q HIGH, i.e. sets the flip-flop.
 In other words, we can say that the output Q follows the D input when EN is HIGH.

J-K Flip-flop (Gated J-K latch)

- The J-K flip-flop is very versatile and also the most widely used.
- The functioning of the J-K flip-flop is identical to that of the S-R flip-flop, except that it has no invalid state like that of S-R flip-flop.
- When $J=0$ and $K=0$, no change of state place even if a clock pulse is applied.
- When $J=0$ and $K=1$, the flip-flop resets at the HIGH level of the clock pulse.
- When $J=1$ and $K=0$, the flip-flop sets at the HIGH level of the clock pulse.
- When $J=1$ and $K=1$, the flip-flop toggles, i.e. goes to the opposite state at HIGH level of clock pulse.
- We can make edge triggered flip-flop as well by using positive and negative edges of clock instead of HIGH and LOW level.

<table>
<thead>
<tr>
<th>En</th>
<th>J</th>
<th>K</th>
<th>Q_n</th>
<th>Q_{n+1}</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No Change</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>No Change</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Reset</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Set</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Toggle</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Toggle</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Toggle</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>No Change</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>No Change</td>
</tr>
</tbody>
</table>

Logic Symbol

[Diagram of J-K Flip-flop]
T Flip-flop (Gated T latch)

- A T flip-flop has a single control input, labeled T for toggle.
- When T is HIGH, the flip-flop toggles on every new clock pulse.
- When T is LOW, the flip-flop remains in whatever state it was before.
- Although T flip-flops are not widely available commercially, it is easy to convert a J-K flip-flop to the functional equivalent of a T flip-flop by just connecting J and K together and labeling the common connection as T.
- Thus, when T = 1, we have J = K = 1, and the flip-flop toggles.
 When T = 0, we have J = K = 0, and so there is no change of state.

Master-slave J-K Flip-flop

- As shown in figure, the external control inputs J and K are applied to the master section.
- The master section is basically a gated JK latch, with Q output is connected back to the input of G₂ and Q’ output is connected back to the input of G₁ and responds to the external J-K inputs applied to it at the positive edge of the clock signal.
- The slave section is the same as the master section except that it is clocked on the inverted clock pulse and thus responds to its control inputs at the negative edge of the clock pulse.
3 – Sequential circuits and systems

- Thus, the master section assumes the state determined by the J and K inputs at the positive edge of the clock pulse and the slave section copies the state of master section at negative edge of the clock pulse.
 The state of the slave then immediately appears on its Q and Q' outputs.

Register

- As a flip-flop (FF) can store only one bit of data, a 0 or a 1, it is referred to as a single-bit register.
- A register is a set of FFs used to store binary data.
- The storage capacity of a register is the number of bits (1s and 0s) of digital data it can retain.
- Loading a register means setting or resetting the individual FFs, i.e. inputting data into the register so that their states correspond to the bits of data to be stored.
- Loading may be serial or parallel.
- In serial loading, data is transferred into the register in serial form i.e. one bit at a time.
- In parallel loading, the data is transferred into the register in parallel form meaning that all the FFs are triggered into their new states at the same time.
- Types of Registers
 1. Buffer register
 2. Shift register
 3. Bidirectional shift register
 4. Universal shift register

Shift register

- A number of FFs connected together such that data may be shifted into and shifted out of them is called a shift register.
- Data may be shifted into or out of the register either in serial form or in parallel form.
- So, there are four basic types of shift registers:
 1. serial-in, serial-out
 2. serial-in, parallel out
 3. parallel-in, serial-out
 4. parallel-in, parallel-out
- Data may be rotated left or right. Data may be shifted from left to right or right to left at will, i.e. in a bidirectional way.
- Also, data may be shifted in serially (in either way) or in parallel and shifted out serially (in either way) or in parallel.
3 – Sequential circuits and systems

Serial-in, Serial-out, Shift register

- With four stages, i.e. four FFs, the register can store up to four bits.
- Serial data is applied at the D input of the first FF. The Q output of the first FF is connected to the D input of the second FF, the Q output of the second FF is connected to the D input of the third FF and the Q output of the third FF is connected to the D input of fourth FF.
- When serial data is transferred into a register, each new bit is clocked into the first FF at the positive edge of each clock pulse.
- The bit that was previously stored by the first FF is transferred to the second FF. The bit that was stored by the second FF is transferred to the third FF, and so on.

- A shift register can also be constructed using J-K FFs as shown in above figure.
- The data is applied at the J input of the first FF, the complement of this is fed to the K input of FF.
The Q output of the first FF is connected to J input of the second FF, the Q output of the second FF to J input of the third FF, and so on.

Also, Q1′ is connected to K2, Q2′ is connected to K3, and so on.

4-bit serial-in, serial-out, shift-left, shift register

Serial-in, Parallel-out, Shift register

- In this type of register, the data bits are entered into the register serially, but the data stored in the register is shifted out in parallel form.
- Once the data bits are stored, each bit appears on its respective output line and all bits are available simultaneously, rather than on a bit-by-bit basis as with the serial output.

The serial-in, parallel-out, shift register can be used as a serial-in, serial-out, shift register if the output is taken from Q terminal of the last FF.
Parallel-in, Serial-out, Shift register

- There are four data lines A, B, C, and D through which the data is entered into the register in parallel form.
- The signal Shift/LOAD allows (a) the data to be entered in parallel form into the register and (b) the data to be shifted out serially from terminal Q4.
- When Shift/LOAD line is HIGH, gates G1, G2, and G3 are disabled, but gates G4, G5, and G6 are enabled allowing the data bits to shift right from one stage to the next.
- When Shift/LOAD line is LOW, gates G4, G5, and G6 are disabled, whereas gates G1, G2, and G3 are enabled allowing the data input to appear at the D inputs of the respective FFs.
- When a clock pulse is applied, these data bits are shifted to the Q output terminals of the FFs and, therefore, data is inputted in one step.

The OR gate allows wither the normal shifting operation or the parallel data entry depending on which NAD gates are enabled by the level on the Shift/LOAD input.

Parallel-in, Parallel-out, Shift register

- When the clock pulse is applied, the D inputs of the FFs are changed simultaneously.
3 – Sequential circuits and systems

- In a parallel-in, parallel-out, shift register the data is entered into the register in parallel form, and also the data is taken out of the register in parallel form.
- Data is applied to the D input terminals of the FFs.
- When a clock pulse is applied, at the positive-going edge of that pulse, the D inputs are shifted into the Q outputs of the FFs.
- The register now stores the data. The stored data is available instantaneously for shifting out in parallel form.

Ring counter

- This is the simplest shift register counter. The basic ring counter using D FFs is shown in figure.
- The FFs are arranged as in a normal shift register, i.e., Q output of each stage is connected to the D input of the next stage, but the Q output of the last FF is connected back to the D input of the first FF such that the array of FFs is arranged in a ring, and therefore, the name *ring counter*.

![Ring Counter Diagram]

- **State diagram:**
 - In most instances, only single 1 is in the register and is made to circulate around the register as long as clock pulses are applied. Initially, the first FF is present to a 1.
 - So, the initial state is 1000. After each clock pulse, the contents of the register are shifted to the right by one bit and Q4 is shifted to Q1.
 - The sequence repeats after four clock pulses.

<table>
<thead>
<tr>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>After clock pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>
Asynchronous counter V/S Synchronous counter

<table>
<thead>
<tr>
<th>Asynchronous counter</th>
<th>Synchronous counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. In this type of counter FFs are connected in such a way that the output of first FF drives the clock for the second FF; the output of the second drives the clock of the third and so on.</td>
<td>1. In this type of counter there is no connection between the output of first FF and clock input of next FF and so on.</td>
</tr>
<tr>
<td>2. All the FFs are not clocked simultaneously.</td>
<td>2. All the FFs are clocked simultaneously.</td>
</tr>
<tr>
<td>3. Design and implementation is very simple even for more number of states.</td>
<td>3. Design and implementation becomes tedious and complex as the number of states increases.</td>
</tr>
<tr>
<td>4. Main drawback of these counters is their low speed as the clock is propagated through a number of FFs before it reaches the last FF.</td>
<td>4. Since clock is applied to all the FFs simultaneously, the total propagation delay is equal to the propagation delay of only one FF. Hence, they are faster.</td>
</tr>
<tr>
<td>5. In this type of counter FFs are connected in such a way that the output of first FF drives the clock for the second FF; the output of the second drives the clock of the third and so on.</td>
<td>5. In this type of counter there is no connection between the output of first FF and clock input of next FF and so on.</td>
</tr>
</tbody>
</table>

2-bit ripple up-counter using negative edge triggered FF

![2-bit ripple up-counter using negative edge triggered FF](image)

<table>
<thead>
<tr>
<th>CLK</th>
<th>Present State</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q_1 Q_0</td>
<td>Q_1 Q_0</td>
</tr>
<tr>
<td>\downarrow</td>
<td>0 0</td>
<td>0 1</td>
</tr>
<tr>
<td>\downarrow</td>
<td>0 1</td>
<td>1 1</td>
</tr>
<tr>
<td>\downarrow</td>
<td>1 0</td>
<td>1 1</td>
</tr>
<tr>
<td>\downarrow</td>
<td>1 1</td>
<td>0 0</td>
</tr>
</tbody>
</table>

![2-bit ripple up-counter using negative edge triggered FF](image)
• The 2-bit up-counter counts in the order 0, 1, 2, 3, 0, ... etc..
• The counter is initially reset to 00.
• When the first clock pulse is applied, FF₁ toggles at the negative edge of this pulse, therefore, Q₁ goes from LOW to HIGH.
• This becomes a positive edge at the clock input of FF₂. So FF₂ is not affected, and hence the state of the counter after one clock pulse is Q₁ = 1 and Q₂ = 0, i.e. 01.
• At the negative edge of the second clock pulse, FF₁ toggles.
• So Q₁ changes from HIGH to LOW and this negative edge clock applied to CLK of FF₂ activates FF₂, and hence, Q₂ goes from LOW to HIGH. Therefore, Q₁ = 0 and Q₂ = 1, i.e. 10 is the state of the counter after the second clock pulse.
• At the negative edge of the third clock pulse, FF₁ toggles.
• So Q₁ changes from a 0 to a 1. This becomes a positive edge to FF₂, hence FF₂ is not affected. Therefore, Q₂ = 1 and Q₁ = 1, i.e. 11 is the state of the counter after the third clock pulse.
• At the negative edge of the fourth clock pulse, FF₁ toggles.
• So, Q₁ changes from a 1 to a 0. This negative edge at Q₁ toggles FF₂, hence Q₂ also changes from a 1 to a 0. Therefore, Q₂ = 0 and Q₁ = 0, i.e. 00 is the state of the counter after the fourth clock pulse.
• So, it acts as a mod-4 counter with Q₁ as the LSB and Q₂ as the MSB.

2-bit ripple down-counter using negative edge triggered FF

- A 2-bit down-counter counts in the order 0, 3, 2, 1, 0, ...etc.
- For down counting, Q₁ of FF₁ is connected to the clock of FF₂. Let initially all the FFs be reset, i.e. 00.
At the negative edge of the first clock pulse, FF₁ toggles. So, Q₁ goes from a 0 to a 1 and Q₁’ goes from a 1 to a 0.

This negative edge at Q₁’ applied to the clock input of FF₂, toggles FF₂ and, therefore, Q₂ goes from a 0 to a 1. So, after one clock pulse Q₂ = 1 and Q₁ = 1, i.e. the state of the counter is 11.

At the negative edge of the second clock pulse, Q₁ changes from a 1 to a 0 and Q₁’ from a 0 to a 1.

This positive edge at Q₁’ does not affect FF₂ and, therefore Q₂ remains at a 1. Hence, the state of the counter after second clock pulse is 10.

At the negative edge of third clock pulse, FF₁ toggles. So, Q₁ goes from a 0 to a 1 and Q₁’ goes from a 1 to a 0.

This negative edge at Q₁’ applied to the clock input of FF₂, toggles FF₂ and, therefore, Q₂ goes from a 1 to a 0. Hence, the state of the counter is 01.

At the negative edge of fourth clock pulse, FF₁ toggles. So, Q₁ goes from a 1 to a 0 and Q₁’ goes from a 0 to a 1.

This positive edge at Q₁’ does not affect FF₂ and, therefore Q₂ remains at a 0. Hence, the state of the counter after fourth clock pulse is 00.

2-bit ripple up-counter using positive edge triggered FF

A 2-bit up-counter counts in the order 0, 1, 2, 3, 0, ... etc.

For up counting in positive edge triggering, Q₁’ of FF₁ is connected to the clock of FF₂. Let initially all the FFs be reset, i.e. 00.
3 – Sequential circuits and systems

- At the positive edge of the first clock pulse, FF\(_1\) toggles. So, Q\(_1\) goes from a 0 to a 1 and Q\(_1\)' goes from a 1 to a 0.
- This negative edge at Q\(_1\)' does not affect FF\(_2\) and, therefore Q\(_2\) remains at a 0. Hence, the state of the counter after first clock pulse is 01.
- At the positive edge of the second clock pulse, Q\(_1\) changes from a 1 to a 0 and Q\(_1\)' from a 0 to a 1.
- This positive edge at Q\(_1\)' applied to the clock input of FF\(_2\), toggles FF\(_2\) and, therefore, Q\(_2\) goes from a 0 to a 1. Hence, the state of the counter is 10.
- At the positive edge of third clock pulse, FF\(_1\) toggles. So, Q\(_1\) goes from a 0 to a 1 and Q\(_1\)' goes from a 1 to a 0.
- This negative edge at Q\(_1\)' does not affect FF\(_2\) and, therefore Q\(_2\) remains at a 1. Hence, the state of the counter after third clock pulse is 11.
- At the positive edge of fourth clock pulse, FF\(_1\) toggles. So, Q\(_1\) goes from a 1 to a 0 and Q\(_1\)' goes from a 0 to a 1.
- This positive edge at Q\(_1\)' applied to the clock input of FF\(_2\), toggles FF\(_2\) and, therefore, Q\(_2\) goes from a 1 to a 0. Hence, the state of the counter is 00.

2-bit ripple down-counter using positive edge triggered FF

- The 2-bit down-counter counts in the order 0, 3, 2, 1, 0, ... etc..
- The counter is initially reset to 00.
- When the first clock pulse is applied, FF\(_1\) toggles at the positive edge of this pulse, therefore, Q\(_1\) goes from LOW to HIGH.
- This positive edge at Q\(_1\) toggles FF\(_2\), hence Q\(_2\) also changes from a 0 to a 1. Therefore, Q\(_2\) = 1 and Q\(_1\) = 1, i.e. 11 is the state of the counter after the first clock pulse.
3 – Sequential circuits and systems

- At the positive edge of the second clock pulse, FF₁ toggles.
- So Q₁ changes from a 1 to a 0. This becomes a negative edge to FF₂, hence FF₂ is not affected. Therefore, Q₂ = 1 and Q₁ = 0, i.e. 10 is the state of the counter after the second clock pulse.
- At the positive edge of the third clock pulse, FF₁ toggles.
- So Q₁ changes from a 0 to a 1. This positive edge at Q₁ toggles FF₂, hence Q₂ also changes from a 1 to a 0. Therefore, Q₂ = 0 and Q₁ = 1, i.e. 01 is the state of the counter after the third clock pulse.
- At the positive edge of the fourth clock pulse, FF₁ toggles.
- So Q₁ changes from a 1 to a 0. This becomes a negative edge to FF₂, hence FF₂ is not affected. Therefore, Q₂ = 0 and Q₁ = 0, i.e. 00 is the state of the counter after the fourth clock pulse.

Modulo-6 asynchronous counter

- A mod-6 counter has six stable states 000, 001, 010, 011, 100, 101.
- It is also known as “Divide by 6” counter and it requires 3 Flip-flops for designing.
- At the 6th clock pulse, it will again reset to 000 via feedback circuit.
- Reset signal R = 1 at time of 110, R = 0 for 000 to 101 and R = X for invalid states i.e. 111.
- Therefore, R = Q₃Q₂Q₁’ + Q₃Q₂Q₁ = Q₃Q₂.

<table>
<thead>
<tr>
<th>After Pulses</th>
<th>State</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>0</td>
</tr>
</tbody>
</table>

![Modulo-6 asynchronous counter circuit diagram]

Krunal D. Vyas, CE Department | 3130704 – Digital Fundamentals
Synchronous counter designing

- Step 1. Number of flip-flops:
 Based on the description of the problem, determine the required number n of the FFs - the smallest value of n is such that the number of states $N \leq 2^n$ and the desired counting sequence.
- Step 2. State diagram:
 Draw the state diagram showing all the possible states.
- Step 3. Choice of flip-flops and excitation table:
 Select the type of flip-flops to be used and write the excitation table.
 An excitation table is a table that lists the present state (PS), the next state (NS) and the required excitations.
- Step 4. Minimal expressions for excitations:
 Obtain the minimal expressions for the excitations of the FFs using K-maps for the excitations of the flip-flops in terms of the present states and inputs.
- Step 5. Logic Diagram:
 Draw the logic diagram based on the minimal expressions.

Flip-Flop Excitation Tables

(1) S-R Flip-flop excitation table

<table>
<thead>
<tr>
<th>PS Q_n</th>
<th>NS Q_{n+1}</th>
<th>Required inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0 X</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1 0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X 0</td>
</tr>
</tbody>
</table>

(2) J-K Flip-flop excitation table

<table>
<thead>
<tr>
<th>PS Q_n</th>
<th>NS Q_{n+1}</th>
<th>Required inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0 X</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1 X</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X 0</td>
</tr>
</tbody>
</table>

(3) D Flip-flop excitation table

<table>
<thead>
<tr>
<th>PS Q_n</th>
<th>NS Q_{n+1}</th>
<th>Required inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(4) T Flip-flop excitation table

<table>
<thead>
<tr>
<th>PS Q_n</th>
<th>NS Q_{n+1}</th>
<th>Required inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Synchronous 3-bit up counter

- Step 1. Number of flip-flops:
 A 3-bit up-counter requires 3 flip-flops. The counting sequence is 000, 001, 010, 011, 100, 101, 110, 111, 000 ...
• Step 2. Draw the state diagram:

![State Diagram]

• Step 3. Select the type of flip-flops and draw the excitation table:
JK flip-flops are selected and the excitation table of a 3-bit up-counter using J-K flip-flops is drawn as shown below.

<table>
<thead>
<tr>
<th>Present State</th>
<th>Next State</th>
<th>Required Excitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_3) (Q_2) (Q_1)</td>
<td>(Q_3) (Q_2) (Q_1)</td>
<td>(J_3) (K_3) (J_2) (K_2) (J_1) (K_1)</td>
</tr>
<tr>
<td>0 0 0</td>
<td>0 0 1</td>
<td>0 X 0 X 1 X</td>
</tr>
<tr>
<td>0 0 1</td>
<td>0 1 0</td>
<td>0 X 1 X X 1</td>
</tr>
<tr>
<td>0 1 0</td>
<td>0 1 1</td>
<td>0 X X 0 1 X</td>
</tr>
<tr>
<td>0 1 1</td>
<td>1 0 0</td>
<td>1 X X 1 X 1</td>
</tr>
<tr>
<td>1 0 0</td>
<td>1 0 1</td>
<td>X 0 0 X 1 X</td>
</tr>
<tr>
<td>1 0 1</td>
<td>1 1 0</td>
<td>X 0 1 X X 1</td>
</tr>
<tr>
<td>1 1 0</td>
<td>1 1 1</td>
<td>X 0 X 0 1 X</td>
</tr>
<tr>
<td>1 1 1</td>
<td>0 0 0</td>
<td>X 1 X 1 X 1</td>
</tr>
</tbody>
</table>

• Step 4. Obtain the minimal expressions
From excitation table, \(J_1 = K_1 = 1\).
\(K\) – Maps for excitations \(J_3\), \(K_3\), \(J_2\) and \(K_2\) and their minimized form are as follows:

![Minimal Expressions]
3 – Sequential circuits and systems

Sequence generator using direct logic (Example)

- **Step 1. Inspect given pulse train**

```
0 1 1 1 0 1 1 1 0
```

- **Step 2. Decide the number of unique states and minimum number of FFs required. If unique states are not possible with the least number of FFs \(n \), then increase the number of FFs by one or more to get the unique states.**

<table>
<thead>
<tr>
<th>FF States</th>
<th>FF States</th>
<th>Decimal equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSB</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td>0 0</td>
<td>0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>0 1</td>
<td>0 0</td>
<td>1</td>
</tr>
<tr>
<td>1 1</td>
<td>0 1 1</td>
<td>3</td>
</tr>
<tr>
<td>? 1</td>
<td>1 0 1</td>
<td>5</td>
</tr>
</tbody>
</table>

State assignment

```
State diagram
```

- **Step 5. Draw the logic diagram**

![Logic diagram](image)
Step 3. Select the type of flip-flops and draw the excitation table:
JK flip-flops are selected and the excitation table of a given sequence using J-K flip-flops is drawn as shown below.

<table>
<thead>
<tr>
<th>PS</th>
<th>NS</th>
<th>Required excitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q₂</td>
<td>Q₂</td>
<td>Q₁</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Step 4. Obtain the minimal expressions
Using K-Maps, we can obtain minimal expressions as shown in below.

\[J_3 = Q_2, K_3 = 1 \]
\[J_2 = Q_3Q_1, K_2 = 1 \]
\[J_1 = 1, K_1 = Q_3 \]

Step 5. Draw the logic diagram

Sequence generator using indirect logic (Example)

Step 1. Inspect given pulse train

```
1 0 1 1 0 1 0 1 1 0 1
```
• Step 2. Obtain output function f to generate the inspected sequence and also obtain minimal expression of function f using K–Map.
We need to reset counter to 000 at the state 101, so expression of R should be Q_0Q_1.

<table>
<thead>
<tr>
<th>Q_3</th>
<th>Q_2</th>
<th>Q_1</th>
<th>Output(f)</th>
<th>States</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>7</td>
</tr>
</tbody>
</table>

\[f = Q_2 + Q_3' Q_1' \]

• Step 3. Draw the logic diagram
Basics of digital to analog converter

- Basically, D/A conversion is the process of converting a value represented in digital code, such as straight binary or BCD, into a voltage or current which is proportional to the digital value.
- Figure shows the symbol for a typical 4-bit D/A converter.
- Each of the digital inputs A, B, C, and D can assume a value 0 or a 1, therefore, there are \(2^4 = 16\) possible combinations of inputs.
- For each input number 0000, 0001, \ldots, 1111, the D/A converter outputs a unique value of voltage.
- The analog output voltage \(V_{\text{out}}\) is proportional to the input binary number, that is,

\[
\text{Analog output} = K \times \text{digital input}
\]

where \(K\) is the proportionality factor and is a constant value for a given DAC.

- The analog output can, of course, be current or voltage.

- Strictly speaking, the output of a DAC is not a true analog quantity, because it can take on only specific values.
- In that sense, it is actually digital. Thus, the output of a DAC is a ‘pseudo-analog’ quantity.
- By increasing the number of input bits, the number of possible output values can be increased and also the step size (the difference between two successive output values) can be reduced, thereby producing an output that is more like an analog quantity.
- When the binary counter is continually recycled through its 16 states by applying the clock Signal, the DAC output will be a staircase waveform with a step size of 1 V.
- When the counter is at 0000, the output of the DAC is minimum (0 V).
- When the counter is at 1111, the output of the DAC is maximum (15 V). This is the full-scale output.
- Digital-to-analog and analog-to-digital conversions form the very important aspects of digital data processing.
- Digital-to-analog conversion is a straightforward process and is considerably easier than the A/D conversion. In fact, a DAC is usually an integral part of any ADC.
Weighted-resistor type DAC

- The diagram of the weighted-resistor DAC is shown in figure.
- The operational amplifier is used to produce a weighted sum of the digital inputs, where the weights are proportional to the weights of the bit positions of inputs.
- Since the op-amp is connected as an inverting amplifier, each input is amplified by a factor equal to the ratio of the feedback resistance divided by the input resistance to which it is connected.
- The MSB D_3 is amplified by R_f/R, D_2 is amplified by $R_f/2R$, D_1 is amplified by $R_f/4R$ and D_0, the LSB is amplified by $R_f/8R$.
- The inverting terminal of the op-amp in figure acts as a virtual ground.
- Since the op-amp adds and inverts,

$$V_{out} = -\left(D_3 + \frac{D_2}{2} + \frac{D_1}{4} + \frac{D_0}{8}\right) x \left(\frac{R_f}{R}\right)$$

- The main disadvantage of this type of DAC is, that a different-valued precision resistor must be used for each bit position of the digital input.

Example: For the weighted-resistor DAC, determine (a) the weight of each input bit if the inputs are 0 V and 5 V, (b) the full-scale output, if $R_f = 1 \, k\Omega$.

Solution:
(a) If MSB passes with a gain of 1, so, its weight = 5 V; the next bit passes with a gain of 1/2, so, its weight = 2.5 V; the following bit passes with a gain of 1/4, so, its weight = 1.25 V; the LSB passes with a gain of 1/8, so, its weight = 0.625 V.

(b) Therefore, the full-scale output when $R_f = R = 1 \, k\Omega$

$$V_{out} = -\left(\frac{5}{2} + \frac{5}{4} + \frac{5}{8}\right) = -9.375 \, V$$

R-2R ladder type DAC

- The R-2R ladder type DAC is the most popular DAC. It uses a ladder network containing series-parallel combinations of two resistors of values R and $2R$.
- The operational amplifier configured as voltage follower is used to prevent loading.
- Figure shows the circuit diagram of a R-2R ladder type DAC having 4-bit digital input.
- When a digital signal $D_3D_2D_1D_0$ is applied at the input terminals of the DAC, an equivalent analog signal is produced at the output terminal.
Case 1: When the input is 1000
- Below figure illustrates the procedure to calculate V_{out} when the input is 1000.
- At the left end of the ladder, 2R is in parallel with 2R, so that the combination is equivalent to R.
- This R is in series with another R giving 2R. This 2R in parallel with another 2R is equivalent to R.
- Continuing in this manner, we ultimately find that $R_{\text{eq}} = 2R$.
- The output voltage, $V_{\text{out}} = E/2$.

Case 2: When the input is 0100
- Below figure illustrates the procedure to calculate V_{out} when the input is 0100.
- Here, we find that to left of terminal B, $R_{\text{eq}} = 2R$. The output voltage, $V_{\text{out}} = E/4$.
Case 3: When the input is 0010
- Below figure illustrates the procedure to calculate V_{out} when the input is 0010.
- Here, we find that at left of terminal C, $R_{eq} = 2R$. The output voltage, $V_{out} = E/8$.

![Diagram 1](Image)

Case 4: When the input is 0001
- Below figure illustrates the procedure to calculate V_{out} when the input is 0001.
- The output voltage, $V_{out} = E/16$.

![Diagram 2](Image)

Specifications for DAC

Resolution (step size):
- The resolution of a DAC is defined as the smallest change that can occur in an analog output as a result of a change in the digital input.
- The resolution of a DAC is also defined as the reciprocal of the number of discrete steps in the full-scale output of the DAC.
- The resolution is always equal to the weight of the LSB and is also referred to as the step size.
- The resolution or step size is the size of the jumps in the staircase waveform.
The step size is the amount by which V_{out} will change as the digital input value is changed from one value to the next.

The step size of the DAC is the same as the proportionality factor in the DAC input-output relationship.

Although resolution can be expressed as the amount of voltage or current per step, it is also useful to express it as a percentage of the full-scale output as

$$\text{% resolution} = \frac{\text{step size}}{\text{full scale}} \times 100\%$$

Since, full-scale = number of steps x step size, resolution can be expressed as

$$\text{% resolution} = \frac{1}{\text{total number of steps}} \times 100\%$$

In general, for an N-bit DAC, the number of different levels will be 2^N and the number of steps will be $2^N - 1$.

The greater the number of bits, the greater will be the number of steps and the smaller will be the step size, and therefore, the finer will be the resolution.

Of course, the cost of the DAC increases with the number of input bits.

Accuracy

- The accuracy of a DAC is usually specified in terms of its full-scale error and linearity error, which are normally expressed as a percentage of the converter's full-scale output.
- The full-scale error is the maximum deviation of the DAC's output from its expected (ideal) value, expressed as a percentage of the full-scale.
- The linearity error is the maximum deviation of the analog output from the ideal output.
- The accuracy and resolution of a DAC must be compatible.

Settling time

- The operating speed of a DAC is usually specified by giving its settling time.
- It is defined as the total time between the instant when the digital input changes and the time that the output enters a specified error band for the last time, usually $\pm 1/2$ LSB around the final value after the change in digital input.
- It is measured as the time for the DAC output to settle within $\pm 1/2$ step size of its final value.
- Generally, DACs with a current output will have shorter settling times than those with voltage outputs.

Offset voltage

- Ideally, the output of a DAC should be zero when the binary input is zero.
- In practice, however, there is a very small output voltage under this situation called the offset voltage.
- This offset error, if not corrected, will be added to the expected DAC output for all input cases.

Monotonicity

- A DAC is said to be monotonic if its output increases as the binary input is incremented from one value to the next.
- This means that the staircase output will have no downward steps as the binary input is incremented from 0 to full-scale value.
4 – A/D converter and D/A converter

- The DAC is said to be non-monotonic, if its output decreases when the binary input is incremented.

Temperature sensitivity
- The analog output voltage for any fixed digital input varies with temperature.

Example: An 8-bit DAC produces $V_{\text{out}} = 0.05$ V for a digital input of 00000001. Find the full-scale output. What is the resolution? What is V_{out} for an input of 00101010?

Solution:
- Full-scale output = Step size x No. of steps

 \[
 = 0.05 \times (2^8 - 1) = 0.05 \times 255 = 12.75 \text{ V}
 \]

- % resolution = $1 / 255 \times 100 \%

 \[
 = 0.392 \%
 \]

- V_{out} for an input of 00101010 = 42×0.05

 \[
 = 2.10 \text{ V}
 \]

Sample and hold circuit

- A basic sample-and-hold circuit is shown in Fig.
- In this circuit the voltage across the capacitor follows the input signal voltage V_i during the time switch S is closed.
- The capacitor holds the instantaneous value of the signal voltage attained just before the switch is opened.
- Thus, for every T, the switch is closed for a short duration and then opened.
- The d.c. voltage across the capacitor gives the value of the signal at the instant the switch is opened.
- This d.c. voltage represents a sample of the signal and is converted to digital signal using A/D converter circuit during the hold period.
- Figure shows a practical S/H circuit in simplified form.
- It consists of two unity gain amplifiers A_1 and A_2 and a digitally controlled switch S.
- Analog input voltage is applied at the input of buffer amplifier A_1.
- The high input impedance of A_1 will prevent loading of the analog signal and its low output impedance will help in the fast charging of the capacitor C when the switch is closed.
- The switch is controlled by a clock generator which makes the switch operate at regular interval as required according to the sampling rate.
- The voltage across the capacitor is applied at the input of the analog-to-digital converter through buffer amplifier A_2.

Krunal D. Vyas, CE Department | 3130704 – Digital Fundamentals
4 – A/D converter and D/A converter

- The high input impedance of A_2 avoids discharge of capacitor due to the loading effect of A/D converter.
- The accuracy of the circuit depends upon the holding of the charge in the capacitor, therefore, a capacitor with a very low leakage must be used.
- A capacitor with polycarbonate, polyethylene, or Teflon dielectric is preferred.
- Most of the other capacitors do not retain the stored charge for a sufficiently long duration due to polarization phenomenon.

Quantization and encoding

- In a digital-to-analog converter, the possible number of digital inputs is fixed.
- For example, in a 3-bit D/A converter, there are 8 possible inputs.
- In contrast, in an analog-to-digital converter, the input analog voltage, can have any value in a range, but the digital output can have only 2^n discrete values for an N-bit A/D converter.
- Therefore, the whole range of analog voltage is required to be represented suitably in 2^n intervals.
- This process is known as quantization.
- Each interval is then assigned a unique N-bit binary code, which is referred to as encoding.

![Quantization Diagram]

- Consider an analog voltage in the range of 0 to V and a 3-bit digital output for any voltage in this range.
- Let us divide the whole range of analog voltage in 8 intervals (3-bit output) of the size $S = V/8$.
- Each interval is assigned a 3-bit binary value.
- The intervals of the analog voltage and their corresponding digital values assigned are shown in above figure.
- From this, we observe that the whole range of voltage in an interval is represented by only one digital value.
- Therefore, there is an error referred to as quantization error, involved in this process of quantization.
- In this case, the maximum quantization error for any analog input voltage V_n in the given range is $V/8$.
Parallel comparator type ADC (Flash type ADC)

- The flash (or simultaneous or parallel) type A/D converter is the fastest type of A/D converter.
- This type of converter utilizes the parallel differential comparators that compare reference voltages with the analog input voltage.
- The main advantage of this type of converter is that the conversion time is less, but the disadvantage is that, an n-bit converter of this type requires $2^n - 1$ comparators, 2^n resistors, and a priority encoder.
- Figure shows a 3-bit flash type A/D converter which requires $7(= 2^3 - 1)$ comparators.
- A reference voltage E_{ref} is connected to a voltage divider that divides it into seven equal increment levels.
- Each level is compared to the analog input by a voltage comparator.
- For any given analog input, one comparator and all those below it will have a HIGH output.
- All comparator outputs are connected to a priority encoder, which produces a digital output corresponding to the input having the highest priority, which in this case is the one that represents the largest input.
- Thus, the digital output represents the voltage that is closest in value to the analog input.
- The voltage applied to the inverting terminal of the uppermost comparator in Figure is (by Voltage divider action),

$$\left(\frac{7R}{7R+R} \right) \times E_{REF} = \frac{7}{8} \times E_{REF}$$

Similarly, the voltage applied to the inverting terminal of the second comparator is

$$\left(\frac{6R}{6R+R} \right) \times E_{REF} = \frac{6}{8} \times E_{REF}$$
and so forth. The increment between voltages is $\frac{1}{8} \times E_{REF}$.

- The flash converter uses no clock signal, because there is no timing or sequencing period.
- The conversion takes place continuously. The only delays in the conversion are in the comparators and the priority encoders.

Successive approximation type ADC

- The successive-approximation converter is one of the most widely used types of ADC.
- It has a much shorter conversion time than the other types, with the exception of the parallel type.
- It also has a fixed conversion time which is not dependent on the value of the analog input.

Figure shows a basic block diagram of a 4-bit successive-approximation type ADC.
- It consists of a DAC, an output register, a comparator, and control circuitry or logic.
- The basic operation is as follows: The bits of DAC are enabled one at a time, starting with the MSB.
- As each bit is enabled, the comparator produces an output that indicates whether the analog input voltage is greater or less than the output of the DAC V_{AX}.
- If the D/A output is greater than the analog input, the comparator output is LOW, causing the bit in the control register to reset.
- If the D/A output is greater than the analog input, the comparator output is HIGH, and the bit is retained in the control register.
- The system enables the MSB first, then the next significant bit, and so on.
- After all the bits of the DAC have been tried, the conversion cycle is complete.
- The processing of each bit takes one clock cycle; so, the total conversion time for an N-bit SA-type ADC will be N clock cycle.

Example

- Let us assume that the output of the DAC ranges from 0 V to 15 V as its binary input ranges from 0000 to 1111, with 0000 producing 0 V and 0001 producing 1 V, and so on.
- Suppose that the unknown analog input voltage V_A is 10.3 V.
- On the first clock pulse, the output register is loaded with 1000, which is converted by the DAC to 8 V.
The voltage comparator determines that 8 V is less than the analog input (10.3 V); so, the control logic retains that bit.
On the next clock pulse, the control circuitry causes the output register to be loaded with 1100.
The output of the DAC is now 12 V, which the comparator determines as greater than the analog input.
Therefore, the comparator output goes LOW. The control logic clears that bit; so, the output goes back to 1000.
On the next clock pulse, the control circuitry causes the output register to be loaded with 1010.
The output of the DAC is now 10 V, which the comparator determines as less than the analog input.
Thus, on the next clock pulse, the control logic causes the output register to be loaded with 1011.
The output of the DAC is now 11 V, which the comparator determines as greater than the analog input; so, the control logic clears that bit.
Now the output of the ADC is 1010 which is the nearest integer value to the input (10.3 V).
At this point, all of the register bits have been processed, the conversion is complete and the control logic activates its EOC output to signal that the digital equivalent of \(V_a\) is now in the output register.

Dual-slope type ADC

- The dual-slope converter is one of the slowest converters, but is relatively inexpensive because it does not require precision components such as a DAC or VCO.
- Another advantage of the dual-slope ADC is its low sensitivity to noise, and to variations in its component values caused by temperature changes.
- Because of its large conversion time, the dual-slope ADC is not used in any data acquisition applications.
- The major applications of this type of converter are in digital voltmeters, multimeters, etc. where slow conversions are not a problem.
- Since it is not fast enough, its use is restricted to signals having low to medium frequencies.
- A dual-slope ADC uses an operational amplifier to integrate the analog input.
- The output of the integrator is a ramp, whose slope is proportional to the input signal \(E_{in}\), since the components R and C are fixed.
- If the ramp is allowed to continue for a fixed time, the voltage it reaches in that time, depends on the slope of the ramp and, therefore, on the value of \(E_{in}\).
The basic principle of an integrating ADC is that, the voltage reached by the ramp controls the length of time that the binary counter is allowed to count.

Thus, a binary number proportional to the value of E_{in} is obtained.

In the dual-slope ADC, two integrations are performed.

Figure shows the functional block diagram of a dual-slope ADC.

Assume that the counter is reset and the output of the integrator is zero.

A conversion begins with the switch connected to the analog input.

Assume that the input is a negative voltage and is constant for a period of time; so, the output of the integrator is a positive ramp.

The ramp is allowed to continue for a fixed time and the voltage it reaches in that time is directly dependent on the analog input.

The fixed time is controlled by sensing the time when the counter reaches a particular count.

At that time, the counter is reset and the control circuitry causes the switch to be connected to a reference voltage E_{REF}, having a polarity opposite to that of the analog input; in this case a positive reference voltage.

Therefore, the output of the integrator is a negative going ramp, beginning from the positive value it reached during the first integration.

The AND gate is enabled and the counter starts counting.

When the ramp reaches $0\, \text{V}$, the voltage comparator switches to LOW, inhibiting the clock pulses and the counter stops counting.

The binary count is latched, thus, completing one conversion.

The count it contains at that time is proportional to the time required for the negative ramp to reach zero, which is proportional to the positive voltage reached during the first integration, which in turn is proportional to the analog input.

The accuracy of the converter does not depend on the values of the integrator components or upon any changes in them.

The accuracy does depend on E_{REF}; so, the reference voltage should be very precise.

Counter type ADC
• This is the simplest type of the A/D converter.
• It employs a binary counter, a voltage comparator, a control circuit, an AND gate, latches, and a D/A converter as shown in above figure.
• It is also called a digital ramp ADC, because the waveform at the output of the DAC is a step-by-step ramp (actually a staircase).
• The analog signal to be converted is applied to the non-inverting terminal of the op-amp comparator.
• The output of the DAC is applied to the inverting terminal of the op-amp.
• Whenever the analog input signal is greater than the DAC output, the output of the op-amp is HIGH and whenever the output of the DAC is greater than the analog signal, the output of the comparator is LOW.
• The comparator output serves as an active-low end of the conversion signal.
• Assume that initially the counter is reset and, therefore, the output of the DAC is zero.
• Since the analog input is larger than the initial output of the DAC, the output of the comparator is HIGH and, therefore, the AND gate is enabled and, so, the clock pulses are transmitted to the counter and the counter advances through its binary states.
• These binary states are converted into reference analog voltage (which is in the form of a step) by the DAC.
• The counter continues to advance from one state to the next, producing successively larger steps in the reference voltage.
• When the staircase output voltage reaches the value of the analog signal, the comparator outputs a LOW, and the AND gate is disabled; so, the clock pulses do not reach the counter and the counter stops.
• The count it reached is the digital output proportional to the analog input.
• The control logic loads the binary count into the latches and resets the counter, thus, beginning another count sequence to sample the input value. The cycle thus repeats itself.
• The resolution of this ADC is equal to the resolution of the DAC it contains.
• The resolution can also be thought of as the built-in error and is often referred to as the quantization error. Thus,

$$\text{Resolution} = \frac{\text{FSR}}{2^N}$$

where FSR is the full-scale reading and N is the number of bits in the counter.
4 - A/D converter and D/A converter

- As in the DAC, the accuracy is not related to the resolution, but is dependent on the accuracy of the circuit components such as comparator, the DAC's precision resistors, etc.
- Figure above illustrates the output of a 4-bit DAC in an ADC over several cycles when the analog input is a slowly varying voltage.
- The principal disadvantage of this type of converter is that, the conversion time depends on the magnitude of the analog input.
- The larger the input, the more will be the number of clock pulses that must pass to reach the proper count, and, therefore, the larger will be the conversion time.
- For each conversion, the counter has to start from reset only and count up to the point at which the staircase reference voltage reaches the analog input voltage.
- This type of converter is considered quite slow in comparison with the other types.

A to D conversion using voltage to frequency conversion

- An analog voltage can be converted into digital form, by producing pulses whose frequency is proportional to the analog voltage.
- These pulses are counted by a counter for a fixed duration and the reading of the counter will be proportional to the frequency of the pulses, and hence, to the analog voltage.
- A voltage-to-frequency converter is shown in below figure.
- The analog voltage V_a is applied to an integrator whose output is applied at the inverting input terminal of a comparator.
- The non-inverting input terminal of the comparator is connected to a reference voltage $-V_R$.
- Initially, the switch S is Open and the voltage V_o decreases linearly with time ($V_o = -V_a \frac{t}{t}$).
- When the decreasing V_o reaches $-V_R$ at $t = T$, the comparator output V_c goes HIGH.
- This is used to close the switch S through a monostable multivibrator.
- When the switch S is closed, the capacitor C discharges, thereby returning the integrator output V_o to 0.
- Since the pulse width of the waveform V_a is very small, a monostable multivibrator is used to keep the switch S closed for a sufficient time to discharge the capacitor completely.
- The rate at which the capacitor discharges depends upon the resistance of the switch.
- Let the pulse width of the monostable multivibrator be T_d, Therefore, the switch S remains closed for T_d after which it opens and V_o starts decreasing again.
- If the integration time $T >> T_d$, the frequency of the waveform V_a and V_c is given by

$$f = \frac{1}{T + T_d} = \frac{1}{T} = \frac{1}{\tau} \frac{V_o}{V_R}$$
• Thus, we obtain an output waveform whose frequency is proportional to the analog input voltage.
• An A/D converter using the voltage-to-frequency (V/F) converter is shown in figure.
• The output of the V/F converter is applied at the clock (CK) input of a counter through an AND gate. The AND gate is enabled for a fixed time interval T_1.
• The reading of the counter at $t = T$ is given by

$$n = fT_1 = \frac{1}{\tau} \frac{V_a}{V_R} T_1$$

which is proportional to V_a.

A to D conversion using voltage to time conversion

- In an A/D converter using V/F converter, the cycles of a variable-frequency source are counted for a fixed period.
- Alternatively, it is possible to make an A/D converter by counting the cycles of a fixed-frequency source for a variable period.
- For this, the analog voltage is required to be converted to a proportional time period.
- An A/D converter, which operates on this principle, is shown in figure.
- A negative reference voltage $-V_R$ is applied to an integrator, whose output is connected to the inverting input terminal of the comparator.
- The analog voltage V_a is applied at the non-inverting input terminal of the comparator.
- The output of the comparator V_c is at logical level 1 as long as the output of the integrator V_o is less than V_a.
- When V_o crosses V_a at $t = T$, V_c goes LOW.
- The AND gate is enabled when V_{EN} is LOW and switch S remains open.
- When V_{EN} goes HIGH, the switch S is closed, thereby discharging the capacitor.
- Also, the AND gate is disabled. When the AND gate is enabled, the clock pulses will reach the clock (CK) input terminal of the counter.
- The output of the counter is the digital output corresponding to V_a.
- The time T is given by

$$T = \frac{\tau}{V_R} V_a$$

which shows that T is proportional to V_a.

The counter reading is n at $t = T$, then
\[n = f_c T = \frac{f_c \tau}{V_R} V_a \]

where, \(f_c \) is the clock frequency. The count \(n \) is proportional to \(V_a \).

Specifications for ADC

- Range of input voltage
- Input impedance
- Accuracy
- Conversion time
- Format of digital output
Memory organization and operation

- The number of inputs required to store the data into or read the data from any memory location is N.
- One set of N lines is required for storing the data into the memory, referred to as data inputs and another set of N lines is required for reading the data already stored in the memory, which is referred to as data outputs.
- The concept of bus is used to refer to a group of conductors carrying related set of signals.
- Therefore, the set of lines meant for data inputs is input data bus and for data outputs is output data bus.
- Input and output data buses are unidirectional, i.e. the data can flow in one direction only.
- In most of the memory chips available, the same set of lines is used for data input as well as data output and is referred to as bidirectional bus.
- This means that the data bus is time multiplexed.
- It is used as input bus for some specific time and as output bus for some other time depending upon a Read/Write control input as shown in figure.
- A number of control inputs are required to give commands to the device to perform the desired operation.
- For example, a command signal is required to tell the memory whether a read or a write (R/W in figure) operation is desired.
- When R/W is HIGH, the data bus will be used for reading the memory (output bus) whereas when R/W is LOW, the bus will be acting in the input direction and the data on the bus will go into the memory.
- Other command includes inputs chip enable (CE), chip select (CS), etc.
- There are mainly two types of operations performed by memory unit.

1. Write operation
 - The chip select signal is applied to the CS terminal.
 - The word to be stored is applied to the data-input terminal.
 - The address of the desired memory location is applied to the address-input terminals.
 - A write command signal is applied to the write control input terminal with R/W = 0.

2. Read operation
 - The chip select signal is applied to the CS terminal.
 - The address of the desired memory location is applied to the address-input terminals.
 - A read command signal is applied to the read control input terminal with R/W = 1.
Memory expansion

- In many applications, the required memory capacity, i.e. the number of words and/or word size, can not be satisfied by a single available memory IC chips.
- Therefore, several chips have to be combined suitably to provide the desired number of words and/or word size.

Expanding word size

- If it is required to have a memory of word size \(n \) and the word size of the available memory ICs is \(N \) \((n > N)\), then a number of similar ICs can be combined together to achieve the desired word size.
- The number of IC chips required is an integer, next higher to the value \(n/N \).
- These chips are to be connected in the following way:
 1. Connect the corresponding address lines of each chip individually, i.e. \(A_0 \) of each chip is connected together and it becomes \(A_0 \) of the overall memory. Similarly, connect other address lines together.
 2. Connect the RD input of each IC together and it becomes the read input for the overall memory. Similarly, connect the WR and CS inputs.

Example: Show how to combine several \(16 \times 4 \) RAM to form a \(16 \times 8 \) RAM.
Solution: \(n = 8 \) and \(N = 4 \), so we require \(n/N = 2 \) chips to obtain desired memory.

Expanding word capacity

- To obtain a memory of capacity \(m \) words, using the memory chips with \(M \) words each, the number of chips required is an integer next higher to the value \(m/M \).
- These chips are to be connected in the following way:
 1. Connect the corresponding address lines of each chip individually.
 2. Connect the RD input of each chip together. Similarly, connect the WR inputs.
 3. Use a decoder of proper size and connect each of its outputs to one of the CS terminals of memory chips.

Example: Show how to combine several \(1K \times 8 \) PROMs to produce \(4K \times 8 \) PROM.
Solution: \(1K \times 8 \) PROM has 10 number of address lines because \(2^{10} = 1024 \) (1K).
We need total 4 number of \(1K \times 8 \) PROM chips to make one \(4K \times 8 \) PROM chip.
Read only memory (ROM)

- A read-only memory (ROM) is a semiconductor memory device used to store information which is permanent in nature.
- It has become an important part of many digital systems because of its low cost, high speed, system-design flexibility and data non-volatility.
- The read-only memory has a variety of applications in digital systems, such as implementation of combinational logic and sequential logic, character generation, look-up table, microprocessor program storage, etc.
- ROMS are well-suited for LSI manufacturing processes and are available in many forms.
- Two major semiconductor technologies are used for the manufacturing of ROM integrated circuits, viz. bipolar technology and MOS technology, which differ primarily in access time.
In general, bipolar devices are faster and have higher drive capability, whereas MOS devices require less silicon area and consume less power.

With improvements in MOS technology, it is now possible to make MOS memories with speeds comparable to those of bipolar memories.

The process of entering information into a ROM is referred to as programming the ROM.

Depending on the programming process employed, the ROMs are categorized as:

1. **Mask programmable read-only memories**, which are referred to as ROMS. In these memories, the data pattern must be programmed as part of the fabrication process. Once programmed, the data pattern can never be changed. These are highly suited for very high-volume usage due to their low cost.

2. **Programmable read-only memories**, which are referred to as PROMs. A PROM is electrically programmable, i.e. the data pattern is defined after final packaging rather than when the device is fabricated. The programming is done with an equipment referred to as PROM programmer. The programming techniques used will be discussed later.

3. **Erasable programmable read-only memories**, which are referred to as EPROMs. As the name suggests, in these memories, data can be written any number of times, i.e. they are reprogrammable. Reprogrammable ROMs are possible only in MOS technology. For erasing the contents of the memory, one of the following two methods are employed:
 (a) Exposing the chip to ultraviolet radiation for about 30 minutes.
 (b) Erasing electrically by applying voltage of proper polarity and amplitude. Electrically erasable PROM is also referred to as E2PROM or EAROM (Electrically alterable ROM).

ROM as PLD

ROM organization

- **k inputs** – provide address for the memory
- **n outputs** – data bits of the stored word selected by address
- **k address input lines** specify 2^k words
- ROM does not have data inputs because it does not have write operation.
- Consider, for example, a 32×8 ROM.
- The unit consists of 32 words of 8 bits each.
- There are five input lines that form the binary numbers from 0 through 31 for the address.
- The five inputs are decoded into 32 distinct outputs by means of a 5×32 decoder.
- Each output of the decoder represents a memory address.
- The 32 outputs of the decoder are connected to each of the 8 OR gates.
- Each OR gate must be considered as having 32 inputs.
- Since each OR gate has 32 input connections and there are 8 OR gates, the ROM contains $32 \times 8 = 256$ internal connections.
- In general, a $2^k \times n$ ROM will have an internal $k \times 2^k$ decoder and n OR gates.
- Each OR gate has 2^k inputs, which are connected to each of the outputs of the decoder.
Example: Implement following functions using ROM.
\[F_1 = \Sigma_m(1, 3, 4, 6) \quad F_2 = \Sigma_m(2, 4, 5, 7) \]
\[F_3 = \Sigma_m(0, 1, 5, 7) \quad F_4 = \Sigma_m(1, 2, 3, 4) \]

Solution: First we have to decide that which decoder has been used to implement given example. We have 3 variable functions, so 3-to-8 decoder will be used.

<table>
<thead>
<tr>
<th>A_2</th>
<th>A_1</th>
<th>A_0</th>
<th>F_1</th>
<th>F_2</th>
<th>F_3</th>
<th>F_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

3 x 8 decoder
Random access memory (RAM)

- Many digital systems require memories in which it should be possible to write into, or read from, any memory location with the same speed.
- In such memories, the data stored at any location can be changed during the operation of the system.
- This type of memory is known as a read/write memory and is usually referred to as RAM (random-access memory).
- The read-write memories (RWM)/random-access memories (RAM) are fabricated using bipolar devices or unipolar (MOS) devices.
- There are two types of RAMs. These are static RAM (SRAM) and dynamic RAM (DRAM).
- Bipolar RAMs are static, whereas the MOS RAMs can be static or dynamic.
- The basic storage cell of a static RAM is a bistable circuit, i.e., a latch, which simply consists of two cross-coupled inverters.
- A RAM is an array of these storage cells requiring as many FLIP-FLOPs as the bit storage capacity of the RAM, which is usually a large number.
- The storage cell of a DRAM is simply a capacitor, therefore, only MOS devices can be used for dynamic random-access memories.
- Since capacitors leak charge, therefore, the voltage stored in it gets reduced with time which requires periodic refreshing.
- In general, bipolar RAMs are faster than the MOS RAMs.
- With improvements in the MOS technology, it has become possible to make MOS RAMS with speeds (access time) comparable to those of bipolar RAMs.

Static RAM v/s Dynamic RAM

<table>
<thead>
<tr>
<th>Static RAM</th>
<th>Dynamic RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SRAM has lower access time, so it is faster compared to DRAM.</td>
<td>1. DRAM has higher access time, so it is slower than SRAM.</td>
</tr>
<tr>
<td>2. SRAM is costlier than DRAM.</td>
<td>2. DRAM costs less compared to SRAM.</td>
</tr>
<tr>
<td>3. SRAM requires constant power supply, which means this type of memory consumes more power.</td>
<td>3. DRAM offers reduced power consumption, due to the fact that the information is stored in the capacitor.</td>
</tr>
<tr>
<td>4. Due to complex internal circuitry, less storage capacity is available compared to the same physical size of DRAM memory chip.</td>
<td>4. Due to the small internal circuitry in the one-bit memory cell of DRAM, the large storage capacity is available.</td>
</tr>
<tr>
<td>5. SRAM has low packaging density.</td>
<td>5. DRAM has high packaging density.</td>
</tr>
<tr>
<td>6. No need to refresh periodically.</td>
<td>6. Due to capacitor used as storage element, information may lose over period of time. So, need to refresh periodically.</td>
</tr>
<tr>
<td>7. Uses an array of 6 transistors for each memory cell.</td>
<td>7. Uses a single transistor and capacitor for each memory cell.</td>
</tr>
</tbody>
</table>
Content addressable memory (CAM)

- The content addressable memory (CAM) is a special purpose random access memory device that can be accessed by searching for data content.
- For this purpose, it is addressed by associating the input data, referred to as key, simultaneously with all the stored words and produces output signals to indicate the match conditions between the key and the stored words.
- This operation is referred to as association or interrogation and this type of memory is also known as associative memory.
- After identifying the locations whose contents match the key, read or write operations can be performed to these locations.
- The key to be used may either consist of the entire data word or only some specific bits of the data word, i.e. the other bits can be masked.
- A CAM differs from the conventional memory organization in that the addressing of a location in the latter has no relation to the memory content.
- A CAM has the ability to search out or interrogate stored data on the basis of its contents and, therefore, can be a powerful asset in many applications.
- For example, consider a list containing the names of persons, their ages, professions, and nationalities stored in a CAM.
- If one is interested in finding out engineers in the list, the CAM is able to check every memory location simultaneously by using the coded form for engineer as the key.
- On the other hand, if it is required to find the engineers of Indian nationality, the key will consist of the combination of the codes corresponding to engineer and Indian nationality.
- All the memory locations with engineers of Indian nationality will be identified and the remaining data (name and age) can then be retrieved by using the read operation.
- To do the same search process with a conventional memory, each memory word is to be read out and compared with the key.
- This search is a serial process and hence time consuming. Thus, CAMS are better suited for information retrieval than the conventional memories.
- CAMS are manufactured using MOS, CMOS, or bipolar technologies. The most popular CAMS use ECL circuitry because of its high-speed operation.

Operation of CAM

- A CAM can perform three basic operations: read, write and associate.
- Figure shows a block diagram of a CAM. Its storage capacity is $M \times N$ bits and is organized as M words of N bits each.
- It has N data input and N data output lines (one line for each bit of a word). The data input lines I_0 through I_{N-1} are used to input data to be written into the memory and for key word in case of associate operation.
- Data are read out of the CAM at the data output lines D_0 through D_{N-1}.
- The Y lines (Y_0 through Y_{M-1}) are bidirectional. During a read or write operation, these lines are used to select the storage location.
- There is one address input line for each word in the CAM. For example, Y_0 is the address line for memory location 0, Y_1 for memory location 1 and so on.
- Notice that linear selection addressing is used in CAMS rather than coincident selection addressing.
- The Y lines serve as match output lines one for each memory location, when an association operation is performed.
- For example, if the keyword matches with the word stored in memory locations 5 and 8, lines Y_5 and Y_8 will become HIGH to indicate the match condition.
- The more control inputs are used to select the required operation.
- The read and write operations are performed in a manner similar to that used for RAM.
- However, during the write operation, the input data also appear at the data outputs.
- The reading of the data is non-destructive.
- The word length and/or word size can be expanded by suitably connecting the available CAM chips in manner similar to the one used for RAMs and ROMs expansion.
Charge coupled device memory (CCD)

- The charge-coupled device (CCD) memory is a type of dynamic memory, in which packets of charges (electrons) are continuously transferred from one MOS device to another.
- The structure of a single MOS device is quite simple and is shown in figure.
- When a high voltage is applied to the metal gate, holes are repelled from a region beneath the gate in the P-type substrate.
- This region called a potential well is then capable of accepting a packet of negative charges.
- Data in the form of charge is transferred from one device to an adjacent one by clocking their gates.
- The CCD memory is inherently serial. Practical memories are constructed in the form of shift registers, each shift register being a line of CCDs.
- By controlling the timing of the clock signals applied to the shift registers, data can be accessed one bit at a time from a single register or several bits at a time from multiple registers.
- The principle advantage of the CCD memory is that, its single cell structure makes it possible to construct large capacity memories at low cost.
- On the other hand, like other dynamic memories, it must be periodically refreshed and driven by rather complex, multi-phase clock signals.
- Since data are stored serially, the average access time is long compared with the semiconductor RAM memory.

Programmable array logic (PAL)

- Programmable array logic (a registered trade mark of Monolithic Memories) is a particular family of programmable logic devices (PLDs) that is widely used and available from a number of manufacturers.
- The PAL circuits consist of a set of AND gates whose inputs can be programmed and whose outputs are connected to an OR gate, i.e. the inputs to the OR gate are hard-wired, i.e. PAL is a PLD with a fixed OR array and a programmable AND array.
- Because only the AND gates are programmable, the PAL is easier to program but is not as flexible as the PLA. Some manufacturers also allow output inversion to be programmed.
- Thus, like AND-OR and AND-OR-INVERT logic, they implement a sum of products logic function.
- Figure 1 below shows a small example of the basic structure.
- The fuse symbols represent fusible links that can be burned open using equipment similar to a PROM programmer.
- Note that every input variable and its complement can be left either connected or disconnected from every AND gate.
- We then say that the AND gates are programmed.
- Figure-2 below shows how the circuit is programmed to implement $F = A'B'C + AB'C$.
- Note this important point. All input variables and their complements are left connected to the unused AND gate, whose output is, therefore, $AA'B'B'C'C = 0$.
- The 0 has no effect on the output of the OR gate. On the other hand, if all inputs to the unused AND gate were burned open, the output of the AND gate would ‘float’ HIGH (logic 1), and the output of the OR gate in that case would remain permanently 1.
- The actual PAL circuits have several groups of AND gates, each group providing inputs to separate OR gates.

- Figure-3 shows an example of how the PAL structure is represented using the abbreviated connections.
- It is a 3-input 3-wide AND-OR structure. In this example, each function can have three minterms or product terms.
- Notice that there are six AND gates, which implies only six chosen products of not more than three variables ABC.
- Inputs to the OR gates at the outputs are fixed as shown by x marked on the vertical lines.
- The inputs to the AND gates are marked on the corresponding line by the x.
5 - Semiconductor memories and Programmable logic device

- Removing the x implies blowing off the corresponding fuse which in turn implies that the corresponding input variable is not applied to the particular AND gate.
- In this example, the circuit is unprogrammed because all the fusible links are intact.
- Note that, the 3-input OR gates are drawn with a single input line.

Example: Implement following functions using PAL: \(F_1 = A'BC + AC' + AB'C \) and \(F_2 = A'B'C' + BC \).
PAL Programming table

- The fuse map of a PAL can be specified in a tabular form. The PAL programming table consists of three columns.
- The first column lists the product terms numerically. The second column specifies the required paths between inputs and AND gates. The third column specifies the outputs of the OR gates.
- For each product term the inputs are marked with 1, 0, or – (dash).
- If a variable in the product term appears in its true form, the corresponding input variable is marked with a 1.
- If it appears in complemented form, the corresponding input variable is marked with a 0.
- If the variable is absent in the product term, it is marked as a – (dash).
- The paths between the inputs and the AND gates are specified under the column heading inputs in the programming table.
- A 1 in the input column specifies a connection from the input variable to the AND gate.
- A 0 in the input column specifies a connection from the complement of the variable to the input of the AND gate.
- A – (dash) specifies a blown fuse in both the input variable and its complement.
- It is assumed that a open terminal in the input of an AND gate behaves like a 1.
- The outputs of the OR gates are specified under the column heading outputs.
- The size of a PAL is specified by the number of inputs, the number of product terms, and the number of outputs.
- For n inputs, k product terms, and m outputs the internal logic of the PAL consists of n buffer inverter gates, k AND gates, and m OR gates.
- When designing a digital system with a PAL, there is no need to show the internal connections of the unit.
- All that is needed is a PAL programming table from which the PAL can be programmed to supply the required logic.

Example: Implement the following Boolean functions using PAL with four inputs and 3-wide AND-OR structure. Also write the PAL programming table.

\[F_1(A, B, C, D) = \sum_m(2, 12, 13) \]
\[F_2(A, B, C, D) = \sum_m(7, 8, 9, 10, 11, 12, 13, 14, 15) \]
\[F_3(A, B, C, D) = \sum_m(0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15) \]
\[F_4(A, B, C, D) = \sum_m(1, 2, 8, 12, 13) \]

Solution:

![Diagram showing PAL programming tables for F1 and F2 functions.]
5 – Semiconductor memories and Programmable logic device

\[F_3 = CD + A'B + B'D' \]

\[F_4 = ABC' + AC'D' + A'B'C'D + A'B'CD' = F_1 + AC'D' + A'B'C'D \]

<table>
<thead>
<tr>
<th>Product term</th>
<th>AND Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Programmable logic array (PLA)

- The PLA represents another type of programmable logic but with a slightly different architecture.
- The PLA combines the characteristics of the PROM and the PAL by providing both a programmable OR array and a programmable AND array, i.e. in a PLA both AND gates and OR gates have fuses at the inputs.
- A third set of fuses in the output inverters allows the output function to be inverted if required.
- Usually X-OR gates are used for controlled inversion. This feature makes it the most versatile of the three PLDs.
- However, it has some disadvantages. Because it has two sets of fuses, it is more difficult to manufacture, program and test it than a PROM or a PAL.
- Figure demonstrates the structure of a three-input, four-output PLA with every fusible link intact.
Like ROM, PLA can be mask programmable or field programmable. With a mask programmable PLA, the user must submit a PLA programming table to the manufacturer.

This table is used by the vendor to produce a user made PLA that has the required internal paths between inputs and outputs.

A second type of PLA available is called a field programmable logic array or FPLA.

The FPLA can be programmed by the user by means of certain recommended procedures.

Example: Implement the following two Boolean functions with a PLA:

\[F_1(A, B, C) = \sum_m(0, 1, 2, 4) \]
\[F_2(A, B, C) = \sum_m(0, 5, 6, 7) \]

Solution:

\[F_1(T) = A'C' + B'C' + A'B' \]

\[F_1' = (A' + B') (B' + C') (A' + C') \]
\[F_1' = AB + AC + BC \]
\[F_1(C) = (AB + AC + BC)' \]
5 – Semiconductor memories and Programmable logic device

\[F_2 (T) = A'B'C' + AB + AC \]

\[F_2 = (A+B')(A+C')(A'+B+C) \]
\[F_2' = A'B + A'C + AB'C' \]
\[F_2(C) = (A'B + A'C + AB'C')' \]

<table>
<thead>
<tr>
<th>Product term</th>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C F_1(C)</td>
<td>F_2(T)</td>
<td></td>
</tr>
<tr>
<td>1 AB</td>
<td>1 1 - 1 1</td>
<td></td>
</tr>
<tr>
<td>2 AC</td>
<td>1 - 1 1 1</td>
<td></td>
</tr>
<tr>
<td>3 BC</td>
<td>- 1 1 1 -</td>
<td></td>
</tr>
<tr>
<td>4 A'B'C'</td>
<td>0 0 0 - 1</td>
<td></td>
</tr>
</tbody>
</table>

Krunal D. Vyas, CE Department | 3130704 – Digital Fundamentals
Complex programmable logic device (CPLD)

- The simple programmable logic devices (SPLDs), such as PALs, EEPLDs, and GALs etc. have limited number of inputs, product terms, and outputs.
- These devices, therefore, can support up to about 32 total number of inputs and outputs only.
- For implementation of circuits that require more inputs and outputs than that are available in a single SPLD chip, either multiple SPLD chips can be employed or more sophisticated type of chip, referred to as complex programmable logic device (CPLD) can be used.
- The expansion of PLD using multiple SPLD chips have the following disadvantages:
 - PC board area requirement increases with the number of chips.
 - Connecting wires will result in adverse capacitive effects.
 - Power requirement increases with the number of chips.
 - System cost increases.
- Another method of increasing the I/O and product terms can be designing of PLDs using the architecture of SPLDs.
- This approach was discarded by the designers because of the following problems associated with this approach:
 - Increase in capacitive effects
 - Increase in leakage currents
 - Decrease in speed
 - Cost effectiveness
- In view of the above difficulties, complex programmable logic devices (CPLDs) were evolved.
- A CPLD is just a collection of individual PLDs on a single chip and programmable interconnection structure.
- By using programming methods, the resources available in various PLDs can be shared in different ways to design complex logic functions.
- The complexity of any digital IC chip can be specified in terms of number of equivalent 2-input NAND gates.
- A typical PAL has 8 macro-cells, if each macro-cell represents about 20 equivalent gates, then the PAL can accommodate a circuit that needs up to about 160 gates.
- For circuits requiring a very large number of gates, CPLDs having large number of macro-cells (say 512 macro-cells) can implement circuits of up to about 10,000 equivalent gates.
- There are a number of manufacturers of CPLDs manufacturing a wide range of products with different features.

Block diagram

- Figure gives block diagram of a complex programmable logic device (CPLD).
- It consists of a number of PAL-like blocks, I/O blocks, and a set of interconnection wires.
- The PAL-like blocks are connected to a set of interconnection wires and each block is also connected to an I/O block to which a number of chip's input and output pins are attached.
- A PAL-like block usually consists of about 16 macro-cells.
- Each macro-cell consists of an AND-OR configuration, an EX-OR gate, a FLIP-FLOP, a multiplexer, and a tri-state buffer.
- Each AND-OR configuration usually consists of 5-20 AND gates and an OR gate with 5-20 inputs.
- An EX-OR gate is used to obtain the output of OR gate in inverted or non-inverted form depending upon its other input being 1 or 0 respectively.
- A D-FF stores the output of the EX-OR gate, a multiplexer selects either the output of the D-FF or the output of the EX-OR gate depending upon its select input.
Field programmable gate array (FPGA)

- The programmable logic devices (SPLDs and CPLDs) are based on similar basic architecture—the programmable array logic (PAL) or the programmable logic array (PLA).
- Over the years, programmable arrays have increased in size and complexity, and highly configurable output macro-cells have been added to enhance their flexibility and expandability.
- To increase the effective size and to add more functionality in a single programmable device, alternative architectures have been developed which are known as field-programmable gate arrays (FPGAs).
- The logic densities of FPGAs are much higher than those of CPLDs.
- They range in size from a few thousands to hundreds of thousands equivalent gates.
- From modern standards digital circuits with hundreds of thousands of gates is not too large.
- FPGA devices support implementation of relatively large complex logic circuits.
- The FPGAs do not contain AND, OR planes, instead they provide logic blocks for implementation of the required digital functions.
- The FPGA is composed of a number of relatively independent configurable logic blocks (CLBs), configurable I/O blocks, and programmable interconnection paths (known as routing channels).
- All the resources of the device are uncommitted and that these must be selected, configured and interconnected by a user to form a logic circuit for his application.
- The basic architecture of an FPGA is shown in figure.
- There are a number of manufacturers of FPGA devices.
- The various families of FPGAs manufactured by different manufacturers differ primarily in the number of logic modules (from few hundreds to hundreds of thousands), supply voltage range, power consumption, speed, architecture, process technology, number of pins, and type of packages, etc.
- The basic FPGA architecture consists of an array of configurable logic blocks (CLBs).
- The logic blocks are surrounded by configurable input/output blocks. There are rows and columns of programmable interconnection paths.
- The I/O blocks can be individually configured as input, output, or bidirectional.