(1) Explain Naïve string matching algorithm.

- The string-matching problem is defined as follows.
- We assume that the text is an array \(T[1...n] \) of length \(n \) and that the pattern is an array \(P[1...m] \) of length \(m \leq n \).
- We further assume that the elements of \(P \) and \(T \) are characters drawn from a finite alphabet \(\Sigma \). For example, we may have \(\Sigma = \{0, 1\} \) or \(\Sigma = \{a, b, ..., z\} \).
- The character arrays \(P \) and \(T \) are often called strings of characters.
- We say that pattern \(P \) occurs with shift \(s \) in text \(T \) (or, equivalently, that pattern \(P \) occurs beginning at position \(s + 1 \) in text \(T \)) if \(0 \leq s \leq n - m \) and \(T[s + 1...s + m] = P[1...m] \) (that is, if \(T[s + j] = P[j] \), for \(1 \leq j \leq m \)).
- If \(P \) occurs with shift \(s \) in \(T \), then we call \(s \) a valid shift; otherwise, we call \(s \) an invalid shift. The string-matching problem is the problem of finding all valid shifts with which a given pattern \(P \) occurs in a given text \(T \).
- The naive algorithm finds all valid shifts using a loop that checks the condition \(P[1...m] = T[s + 1...s + m] \) for each of the \(n - m + 1 \) possible values of \(s \).

NAIVE-STRING-MATCHER(\(T, P \))

1. \(n \leftarrow \text{length}[T] \)
2. \(m \leftarrow \text{length}[P] \)
3. \(\text{for } s \leftarrow 0 \text{ to } n - m \text{ do} \)
 4. \(\text{if } P[1,..., m] = T[s + 1,..., s + m] \)
 5. \(\text{then print "Pattern occurs with shift" } s \)

- The naive string-matching procedure can be interpreted graphically as sliding a "template" containing the pattern over the text, noting for which shifts all of the characters on the template equal the corresponding characters in the text, as illustrated in Figure.
- The for loop beginning on line 3 considers each possible shift explicitly.
- The test on line 4 determines whether the current shift is valid or not; this test involves an implicit loop to check corresponding character positions until all positions match successfully or a mismatch is found.
- Line 5 prints out each valid shift \(s \).
- Example

![Diagram](image)

- In the above example, valid shift is \(s = 3 \) for which we found the occurrence of pattern \(P \) in text \(T \).
- Procedure **NAIVE-STRING-MATCHER** takes time \(O((n - m + 1)m) \), and this bound is tight in the worst case.
The running time of NAIVE-STRING-MATCHER is equal to its matching time, since there is no preprocessing.

(2) Explain Rabin-carp method for string matching and also give the algorithm.

- This algorithm makes use of elementary number-theoretic notions such as the equivalence of two numbers modulo a third number.
- Let us assume that \(\Sigma = \{0, 1, 2 \ldots 9\} \), so that each character is a decimal digit. (In the general case, we can assume that each character is a digit in radix-\(d \) notation, where \(d = |\Sigma| \)).
- We can then view a string of \(k \) consecutive characters as representing a length-\(k \) decimal number. The character string 31415 thus corresponds to the decimal number 31,415.
- Given a pattern \(P[1 \ldots m] \), let \(p \) denote its corresponding decimal value.
- In a similar manner, given a text \(T[1 \ldots n] \), let \(t_i \) denote the decimal value of the length-\(m \) substring \(T[s + 1 \ldots s + m] \), for \(s = 0, 1 \ldots n - m \).
- Certainly, \(t_i = p \) if and only if \(T[s + 1 \ldots s + m] = P[1 \ldots m] \); thus, \(s \) is a valid shift if and only if \(t_i = p \).
- We can compute \(p \) in time \(\Theta(m) \) using Horner's rule:
 \[
p = P[m] + 10(P[m-1] + 10(P[m-2] + \cdots + 10(P[2] + 10P[1])\ldots))
\]
 The value \(t_0 \) can be similarly computed from \(T[1 \ldots m] \) in time \(\Theta(m) \).
- To compute the remaining values \(t_1, t_2, \ldots, t_{n-m} \) in time \(\Theta(n - m) \), it suffices to observe that \(t_{i+1} \) can be computed from \(t_i \) in constant time, since
 \[
t_{i+1} = 10(t_i - 10^{m-1}T[s + 1]) + T[s + m + 1]
\]
 Subtracting \(10^{m-1}T[s + 1] \) removes the high-order digit from \(t_i \), multiplying the result by 10 shifts the number left one position, and adding \(T[s + m + 1] \) brings in the appropriate lower order digit.
 For example, if \(m = 5 \) and \(t_i = 31415 \) then we wish to remove the high order digit \(T[s + 1] = 3 \) and bring in the new lower order digit (suppose it is \(T[s + 5 + 1] = 2 \)) to obtain
 \[
t_{i+1} = 10(31415 - 10000 \times 3) + 2 = 14152
\]
 The only difficulty with this procedure is that \(p \) and \(t_i \) may be too large to work with conveniently.
- There is a simple cure for this problem, compute \(p \) and the \(t_i's \) modulo a suitable modulus \(q \).
 \[
t_{i+1} = (d(t_i - T[s + 1]h) + T[s + m + 1]) \mod q
\]
 Where \(h = d^{m-1} \mod q \) is the value of the digit "1" in the high-order position of an \(m \)-digit text window.
- The solution of working modulo \(q \) is not perfect, however \(t_i = p \mod q \) does not imply that \(t_i = p \) but if \(t_i \neq p \mod q \) definitely implies \(t_i \neq p \), so that shift \(s \) is invalid.
- Any shift \(s \) for which \(t_i = p \mod q \) must be tested further to see whether \(s \) is really valid or it is just a spurious hit.
- This additional test explicitly checks the condition \(T[s + 1 \ldots s + m] = P[1 \ldots m] \).
Example

pattern P

3 1 4 1 5

mod 13

7

text T

2 3 5 9 0 2 3 1 4 1 5 2 6 7 3 9 9 2 1

mod 13

7

valid match

spurious hit

Algorithm RABIN-KARP-MATCHER(T, P, d, q)

n ← length[T];
m ← length[P];
h ← d^{m-1} mod q;
p ← 0;
t_{0} ← 0;
for i ← 1 to m do
 p ← (dp + P[i]) mod q;
 t_{0} ← (dt_{0} + P[i]) mod q
for s ← 0 to n – m do
 if p == t_{s}, then
 if P[1..m] == T[s+1..s+m] then
 print “pattern occurs with shift s”
 if s < n-m then
 t_{s+1} ← (d(t_{s} – T[s+1]h) + T[s+m+1]) mod q

Analysis

• RABIN-KARP-MATCHER takes Θ(m) preprocessing time and it matching time is Θ(m(n – m + 1)) in the worst case.

(3) Explain finite automata for string matching.

• Many string-matching algorithms build a finite automaton that scans the text string T for all occurrences of the pattern P.
We begin with the definition of a finite automaton. We then examine a special string-matching automaton and show how it can be used to find occurrences of a pattern in a text. Finally, we shall show how to construct the string-matching automaton for a given input pattern.

Finite automata
A finite automaton M is a 5-tuple $(Q, q_0, A, \Sigma, \delta)$, where
- Q is a finite set of states,
- $q_0 \in Q$ is the start state,
- $A \subseteq Q$ is a distinguished set of accepting states,
- Σ is a finite input alphabet,
- δ is a function from $Q \times \Sigma$ into Q, called the transition function of M.

The finite automaton begins in state q_0 and reads the characters of its input string one at a time. If the automaton is in state q and reads input character a, it moves ("makes a transition") from state q to state $\delta(q, a)$. Whenever its current state q is a member of A, the machine M is said to have accepted the string read so far. An input that is not accepted is said to be rejected.

Following Figure illustrates these definitions with a simple two-state automaton.

String-matching automata
- There is a string-matching automaton for every pattern P; this automaton must be constructed from the pattern in a preprocessing step before it can be used to search the text string.
- In our example pattern $P = ababaca$.
- In order to specify the string-matching automaton corresponding to a given pattern $P[1, \ldots, m]$, we first define an auxiliary function σ, called the suffix function corresponding to P.
- suffix of a string x is denoted as $w \supseteq x$ if $x = yw$.
- The function σ is a mapping from Σ^* to $\{0, 1, \ldots, m\}$ such that $\sigma(x)$ is the length of the longest prefix of P that is a suffix of x:

$$\sigma(x) = \max\{k : P_k \supseteq x\}$$

- The suffix function σ is well defined since the empty string $P_0 = \varepsilon$ is a suffix of every string.
- As examples, for the pattern $P = ab$, we have $\sigma(\varepsilon) = 0$, $\sigma(ccaca) = 1$, and $\sigma(ccab) = 2$.

![Finite automaton diagram](attachment:image.png)
For a pattern \(P \) of length \(m \), we have \(\sigma(x) = m \) if and only if \(P \supseteq x \). It follows from the definition of the suffix function that if \(x \supseteq y \), then \(\sigma(x) \leq \sigma(y) \).

We define the string-matching automaton that corresponds to a given pattern \(P[1,...,m] \) as follows.

The state set \(Q \) is \(\{0, 1 \ldots m\} \). The start state \(q_0 \) is state 0, and state \(m \) is the only accepting state.

The transition function \(\delta \) is defined by the following equation, for any state \(q \) and character \(a \):

\[
\delta(q, a) = \sigma(P_qa)
\]

The following procedure computes the transition function \(\delta \) from a given pattern \(P[1,...,m] \).

Algorithm Compute-Transition-Function(\(P, \Sigma \))

1. \(m \leftarrow \text{length}[P] \)
2. \(q \leftarrow 0 \)
3. for each character \(a \in \Sigma \) do
4. \(k \leftarrow \min(m + 1, q + 2) \)
5. repeat \(k \leftarrow k - 1 \)
6. until \(P_k \supseteq P_qa \)

Computing the transition function

The following procedure computes the transition function \(\delta \) from a given pattern \(P[1,...,m] \).

Algorithm Finite-Automaton-Matcher(\(T, \delta, m \))

1. \(n \leftarrow \text{length}[T] \)
2. \(q \leftarrow 0 \)
3. for \(i \leftarrow 1 \) to \(n \) do
4. \(q \leftarrow \delta(q, T[i]) \)
5. if \(q = m \) then print "Pattern occurs with shift" \(i - m \)
7. \(\delta(q, a) \leftarrow k \)
8. \(\text{return} \ \delta \)

- This procedure computes \(\delta(q, a) \) in a straightforward manner according to its definition.
- The nested loops beginning on lines 2 and 3 consider all states \(q \) and characters \(a \), and lines 4-7 set \(\delta(q, a) \) to be the largest \(k \) such that \(P_k \supseteq P_q a \). The code starts with the largest conceivable value of \(k \), which is \(\min(m, q + 1) \), and decreases \(k \) until \(P_k \supseteq P_q a \).
- Time complexity for string matching algorithm

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Preprocessing time</th>
<th>Matching time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>0</td>
<td>(O((n - m + 1)m))</td>
</tr>
<tr>
<td>Rabin-Karp</td>
<td>(\Theta(m))</td>
<td>(O((n - m + 1)m))</td>
</tr>
<tr>
<td>Finite automaton</td>
<td>(O(m</td>
<td>\Sigma</td>
</tr>
</tbody>
</table>